The effects of temperature-dependent viscosity on flow in a cooled channel with application to basaltic fissure eruptions

1995 ◽  
Vol 305 ◽  
pp. 239-261 ◽  
Author(s):  
Jonathan J. Wylie ◽  
John R. Lister

A theoretical description is given of pressure-driven viscous flow of an initially hot fluid through a planar channel with cold walls. The viscosity of the fluid is assumed to be a function only of its temperature. If the viscosity variations caused by the cooling of the fluid are sufficiently large then the relationship between the pressure drop and the flow rate is non-monotonic and there can be more than one steady flow for a given pressure drop. The linear stability of steady flows to two-dimensional and three-dimensional disturbances is calculated. The region of instability to two-dimensional disturbances corresponds exactly to those flows in which an increase in flow rate leads to a decrease in pressure drop. At higher viscosity contrasts some flows are most unstable to three-dimensional (fingering) instabilities analogous, but not identical, to Saffman-Taylor fingering. A cross-channel-averaged model is derived and used to investigate the finite-amplitude evolution.

1987 ◽  
Vol 178 ◽  
pp. 491-506 ◽  
Author(s):  
D. R. Jenkins

We consider finite-amplitude thermal convection, in a horizontal fluid layer. The viscosity of the fluid is dependent upon its temperature. Using a weakly nonlinear expansion procedure, we examine the stability of two-dimensional roll and three-dimensional square planforms, in order to determine which should be preferred in convection experiments. The analysis shows that the roll planform is preferred for low values of the ratio of the viscosities at the top and bottom boundaries, but the square planform is preferred for larger values of the ratio. At still larger values, subcritical convection is predicted. We also include the effects of boundaries having finite thermal conductivity, which enables favourable comparison to be made with experimental studies. A discrepancy between the present work and a previous study of this problem (Busse & Frick 1985) is discussed.


1985 ◽  
Vol 150 ◽  
pp. 451-465 ◽  
Author(s):  
F. H. Busse ◽  
H. Frick

Three-dimensional numerical solutions are obtained describing convection with a square lattice in a layer heated from below with no-slip top and bottom boundaries. The limit of infinite Prandtl number and a linear dependence of the viscosity on temperature are assumed. The stability of the three-dimensional solutions with respect to disturbances fitting the square lattice is analysed. It is shown that convection in the form of two-dimensional rolls is stable for low variations of viscosity, while square-pattern convection becomes stable when the viscosity contrast between upper and lower parts of the fluid layer is sufficiently strong. The theoretical results are in qualitative agreement with experimental observations.


2000 ◽  
Vol 413 ◽  
pp. 1-47 ◽  
Author(s):  
C. P. CAULFIELD ◽  
W. R. PELTIER

We investigate the detailed nature of the ‘mixing transition’ through which turbulence may develop in both homogeneous and stratified free shear layers. Our focus is upon the fundamental role in transition, and in particular the associated ‘mixing’ (i.e. small-scale motions which lead to an irreversible increase in the total potential energy of the flow) that is played by streamwise vortex streaks, which develop once the primary and typically two-dimensional Kelvin–Helmholtz (KH) billow saturates at finite amplitude.Saturated KH billows are susceptible to a family of three-dimensional secondary instabilities. In homogeneous fluid, secondary stability analyses predict that the stream-wise vortex streaks originate through a ‘hyperbolic’ instability that is localized in the vorticity braids that develop between billow cores. In sufficiently strongly stratified fluid, the secondary instability mechanism is fundamentally different, and is associated with convective destabilization of the statically unstable sublayers that are created as the KH billows roll up.We test the validity of these theoretical predictions by performing a sequence of three-dimensional direct numerical simulations of shear layer evolution, with the flow Reynolds number (defined on the basis of shear layer half-depth and half the velocity difference) Re = 750, the Prandtl number of the fluid Pr = 1, and the minimum gradient Richardson number Ri(0) varying between 0 and 0.1. These simulations quantitatively verify the predictions of our stability analysis, both as to the spanwise wavelength and the spatial localization of the streamwise vortex streaks. We track the nonlinear amplification of these secondary coherent structures, and investigate the nature of the process which actually triggers mixing. Both in stratified and unstratified shear layers, the subsequent nonlinear amplification of the initially localized streamwise vortex streaks is driven by the vertical shear in the evolving mean flow. The two-dimensional flow associated with the primary KH billow plays an essentially catalytic role. Vortex stretching causes the streamwise vortices to extend beyond their initially localized regions, and leads eventually to a streamwise-aligned collision between the streamwise vortices that are initially associated with adjacent cores.It is through this collision of neighbouring streamwise vortex streaks that a final and violent finite-amplitude subcritical transition occurs in both stratified and unstratified shear layers, which drives the mixing process. In a stratified flow with appropriate initial characteristics, the irreversible small-scale mixing of the density which is triggered by this transition leads to the development of a third layer within the flow of relatively well-mixed fluid that is of an intermediate density, bounded by narrow regions of strong density gradient.


1997 ◽  
Vol 335 ◽  
pp. 1-28 ◽  
Author(s):  
MELVIN E. STERN ◽  
ERIC P. CHASSIGNET ◽  
J. A. WHITEHEAD

The previously observed spatial evolution of the two-dimensional turbulent flow from a source on the vertical wall of a shallow layer of rapidly rotating fluid is strikingly different from the non-rotating three-dimensional counterpart, insofar as the instability eddies generated in the former case cause the flow to separate completely from the wall at a finite downstream distance. In seeking an explanation of this, we first compute the temporal evolution of two-dimensional finite-amplitude waves on an unstable laminar jet using a finite difference calculation at large Reynolds number. This yields a dipolar vorticity pattern which propagates normal to the wall, while leaving some of the near-wall vorticity (negative) of the basic flow behind. The residual far-field eddy therefore contains a net positive circulation and this property is incorporated in a heuristic point-vortex model of the spatial evolution of the instability eddies observed in a laboratory experiment of a flow emerging from a source on a vertical wall in a rotating tank. The model parameterizes the effect of Ekman bottom friction in decreasing the circulation of eddies which are periodically emitted from the source flow on the wall. Further downstream, the point vortices of the model merge and separate abruptly from the wall; the statistics suggest that the downstream separation distance scales with the Ekman spin-up time (inversely proportional to the square root of the Coriolis parameter f) and with the mean source velocity. When the latter is small and f is large, qualitative support is obtained from laboratory experiments.


1986 ◽  
Vol 20 (5) ◽  
pp. 668-679
Author(s):  
S. Ya. Gertsenshtein ◽  
I. I. Olaru ◽  
A. Ya. Hudnitokii ◽  
A. N. Sukhorukov

Sign in / Sign up

Export Citation Format

Share Document