Square-pattern convection in fluids with strongly temperature-dependent viscosity

1985 ◽  
Vol 150 ◽  
pp. 451-465 ◽  
Author(s):  
F. H. Busse ◽  
H. Frick

Three-dimensional numerical solutions are obtained describing convection with a square lattice in a layer heated from below with no-slip top and bottom boundaries. The limit of infinite Prandtl number and a linear dependence of the viscosity on temperature are assumed. The stability of the three-dimensional solutions with respect to disturbances fitting the square lattice is analysed. It is shown that convection in the form of two-dimensional rolls is stable for low variations of viscosity, while square-pattern convection becomes stable when the viscosity contrast between upper and lower parts of the fluid layer is sufficiently strong. The theoretical results are in qualitative agreement with experimental observations.

1987 ◽  
Vol 178 ◽  
pp. 491-506 ◽  
Author(s):  
D. R. Jenkins

We consider finite-amplitude thermal convection, in a horizontal fluid layer. The viscosity of the fluid is dependent upon its temperature. Using a weakly nonlinear expansion procedure, we examine the stability of two-dimensional roll and three-dimensional square planforms, in order to determine which should be preferred in convection experiments. The analysis shows that the roll planform is preferred for low values of the ratio of the viscosities at the top and bottom boundaries, but the square planform is preferred for larger values of the ratio. At still larger values, subcritical convection is predicted. We also include the effects of boundaries having finite thermal conductivity, which enables favourable comparison to be made with experimental studies. A discrepancy between the present work and a previous study of this problem (Busse & Frick 1985) is discussed.


1969 ◽  
Vol 36 (2) ◽  
pp. 239-258 ◽  
Author(s):  
S. F. Liang ◽  
A. Vidal ◽  
Andreas Acrivos

Numerical solutions to the Boussinesq equations containing a temperature-dependent viscosity are presented for the case of axisymmetric buoyancy-driven convective flow in a cylindrical cell. Two solutions, one with upflow and the other with downflow at the centre of the cell, were found for each set of boundary conditions that were considered. The existence of these two steady-state régimes was verified experimentally for the case of a cylindrical cell having rigid insulating lateral boundaries and isothermal top and bottom planes.Using a perturbation expansion it is also shown that only one of these solutions remains stable in the subcritical régime. This, however, seems to be confined to a very narrow range of Rayleigh numbers, beyond which, according to all the evidence presently at hand, both solutions are equally stable for those values of the Rayleigh and Prandtl numbers for which axisymmetric motions occur.Finally, certain fundamental differences between the problem considered here and that of thermal convection in a layer of infinite horizontal extent are briefly discussed.


1998 ◽  
Vol 120 (3) ◽  
pp. 600-605 ◽  
Author(s):  
T. M. Harms ◽  
M. A. Jog ◽  
R. M. Manglik

Fully developed laminar flows in a semicircular duct with temperature-dependent viscosity variations in the flow cross section are analyzed, where the viscosity-temperature behavior is described by the Arrhenius model. Both the T and H1 boundary conditions are considered, as they represent the most fundamental heating/cooling conditions encountered in practical compact heat exchanger applications. Numerical solutions for the flow velocity and the temperature fields have been obtained by finite difference technique. The friction factor and Nusselt number results display a strong dependence on the viscosity ratio (μw/μb), and this is correlated using the classical power-law relationship. However, results indicate that the power-law exponents are significantly different from traditional values for circular tube. They are found to be functions of the flow geometry, boundary condition, and direction of heat transfer (heating or cooling).


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7829
Author(s):  
Meng Yang ◽  
Munawwar Ali Abbas ◽  
Wissam Sadiq Khudair

In this research, we studied the impact of temperature dependent viscosity and thermal radiation on Eyring Powell fluid with porous channels. The dimensionless equations were solved using the perturbation technique using the Weissenberg number (ε ≪ 1) to obtain clear formulas for the velocity field. All of the solutions for the physical parameters of the Reynolds number (Re), magnetic parameter (M), Darcy parameter (Da) and Prandtl number (Pr) were discussed through their different values. As shown in the plots the two-dimensional and three-dimensional graphical results of the velocity profile against various pertinent parameters have been illustrated with physical reasons. The results revealed that the temperature distribution increases for higher Prandtl and thermal radiation values. Such findings are beneficial in the field of engineering sciences.


2011 ◽  
Vol 134 (1) ◽  
Author(s):  
I. S. Shivakumara ◽  
Jinho Lee ◽  
C. E. Nanjundappa

The onset of thermogravitational convection in a horizontal ferrofluid layer is investigated with viscosity depending exponentially on temperature. The bounding surfaces of the ferrofluid layer are considered to be either stress free or rigid-ferromagnetic and insulated to temperature perturbations. The resulting eigenvalue problem is solved numerically using the Galerkin technique and also by a regular perturbation technique for different types of velocity boundary conditions, namely free-free, rigid-rigid, and lower rigid- upper free. It is observed that increasing the viscosity parameter, Λ, and the magnetic number, M1, is to hasten the onset of ferroconvection, while the nonlinearity of fluid magnetization, M3, is found to have no influence on the stability of the system. The critical stability parameters are found to be the same in the limiting cases of either no magnetic forces or no buoyancy forces.


Sign in / Sign up

Export Citation Format

Share Document