Examination of hypotheses in the Kolmogorov refined turbulence theory through high-resolution simulations. Part 1. Velocity field

1996 ◽  
Vol 309 ◽  
pp. 113-156 ◽  
Author(s):  
Lian-Ping Wang ◽  
Shiyi Chen ◽  
James G. Brasseur ◽  
John C. Wyngaard

The fundamental hypotheses underlying Kolmogorov-Oboukhov (1962) turbulence theory (K62) are examined directly and quantitutivezy by using high-resolution numerical turbulence fields. With the use of massively parallel Connection Machine-5, we have performed direct Navier-Stokes simulations (DNS) at 5123 resolution with Taylor microscale Reynolds number up to 195. Three very different types of flow are considered: free-decaying turbulence, stationary turbulence forced at a few large scales, and a 2563 large-eddy simulation (LES) flow field. Both the forced DNS and LES flow fields show realistic inertial-subrange dynamics. The Kolmogorov constant for the k−5/3 energy spectrum obtained from the 5123 DNS flow is 1.68 ±.15. The probability distribution of the locally averaged disspation rate εr, over a length scale r is nearly log-normal in the inertial subrange, but significant departures are observed for high-order moments. The intermittency parameter p, appearing in Kolmogorov's third hypothesis for the variance of the logarithmic dissipation, is found to be in the range of 0.20 to 0.28. The scaling exponents over both εr, and r for the conditionally averaged velocity increments $\overline{\delta_ru|\epsilon_r}$ are quantified, and the direction of their variations conforms with the refined similarity theory. The dimensionless averaged velocity increments $(\overline{\delta_ru^n|\epsilon_r})/(\epsilon_rr)^{n/3}$ are found to depend on the local Reynolds number Reεr = ε1/3rr4/3/ν in a manner consistent with the refined similarity hypotheses. In the inertial subrange, the probability distribution of δru/(εrr)1/3 is found to be universal. Because the local Reynolds number of K62, Rεr = ε1/3rr4/3/ν, spans a finite range at a given scale r as compared to a single value for the local Reynolds number Rr = ε−1/3r4/3/ν in Kolmogorov's (1941a,b) original theory (K41), the inertial range in the K62 context can be better realized than that in K41 for a given turbulence field at moderate Taylor microscale (global) Reynolds number Rλ. Consequently universal constants in the second refined similarity hypothesis can be determined quite accurately, showing a faster-than-exponential growth of the constants with order n. Finally, some consideration is given to the use of pseudo-dissipation in the context of the K62 theory where it is found that the probability distribution of locally averaged pseudo-dissipation ε′r deviates more from a log-normal model than the full dissipation εr. The velocity increments conditioned on ε′r do not follow the refined similarity hypotheses to the same degree as those conditioned on εr.

1990 ◽  
Vol 210 ◽  
pp. 113-153 ◽  
Author(s):  
D. J. Thomson

A new stochastic model for the motion of particle pairs in isotropic high-Reynolds-number turbulence is proposed. The model is three-dimensional and its formulation takes account of recent improvements in the understanding of one-particle models. In particular the model is designed so that if the particle pairs are initially well mixed in the fluid, they will remain so. In contrast to previous models, the new model leads to a prediction for the particle separation probability density function which is in qualitative agreement with inertial subrange theory. The values of concentration variance from the model show encouraging agreement with experimental data. The model results suggest that, at large times, the intensity of concentration fluctuations (i.e. standard deviation of concentration divided by mean concentration) tends to zero in stationary conditions and to a constant in decaying turbulence.


2020 ◽  
Vol 9 (1) ◽  
pp. 84-88
Author(s):  
Govinda Prasad Dhungana ◽  
Laxmi Prasad Sapkota

 Hemoglobin level is a continuous variable. So, it follows some theoretical probability distribution Normal, Log-normal, Gamma and Weibull distribution having two parameters. There is low variation in observed and expected frequency of Normal distribution in bar diagram. Similarly, calculated value of chi-square test (goodness of fit) is observed which is lower in Normal distribution. Furthermore, plot of PDFof Normal distribution covers larger area of histogram than all of other distribution. Hence Normal distribution is the best fit to predict the hemoglobin level in future.


2006 ◽  
Vol 63 (5) ◽  
pp. 1451-1466 ◽  
Author(s):  
Holger Siebert ◽  
Katrin Lehmann ◽  
Manfred Wendisch

Abstract Tethered balloon–borne measurements with a resolution in the order of 10 cm in a cloudy boundary layer are presented. Two examples sampled under different conditions concerning the clouds' stage of life are discussed. The hypothesis tested here is that basic ideas of classical turbulence theory in boundary layer clouds are valid even to the decimeter scale. Power spectral densities S( f ) of air temperature, liquid water content, and wind velocity components show an inertial subrange behavior down to ≈20 cm. The mean energy dissipation rates are ∼10−3 m2 s−3 for both datasets. Estimated Taylor Reynolds numbers (Reλ) are ∼104, which indicates the turbulence is fully developed. The ratios between longitudinal and transversal S( f ) converge to a value close to 4/3, which is predicted by classical turbulence theory for local isotropic conditions. Probability density functions (PDFs) of wind velocity increments Δu are derived. The PDFs show significant deviations from a Gaussian distribution with longer tails typical for an intermittent flow. Local energy dissipation rates ɛτ are derived from subsequences with a duration of τ = 1 s. With a mean horizontal wind velocity of 8 m s−1, τ corresponds to a spatial scale of 8 m. The PDFs of ɛτ can be well approximated with a lognormal distribution that agrees with classical theory. Maximum values of ɛτ ≈ 10−1 m2 s−3 are found in the analyzed clouds. The consequences of this wide range of ɛτ values for particle–turbulence interaction are discussed.


Author(s):  
Lilas Deville ◽  
Mihai Arghir

Brush seals are a mature technology that has generated extensive experimental and theoretical work. Theoretical models range from simple correlations with experimental results to advanced numerical approaches coupling the bristles deformation with the flow in the brush. The present work follows this latter path. The bristles of the brush are deformed by the pressure applied by the flow, by the interference with the rotor and with the back plate. The bristles are modeled as linear beams but a nonlinear numerical algorithm deals with the interferences. The brush with its deformed bristles is then considered as an anisotropic porous medium for the leakage flow. Taking into account, the variation of the permeability with the local geometric and flow conditions represents the originality of the present work. The permeability following the principal directions of the bristles is estimated from computational fluid dynamics (CFD) calculations. A representative number of bristles are selected for each principal direction and the CFD analysis domain is delimited by periodicity and symmetry boundary conditions. The parameters of the CFD analysis are the local Reynolds number and the local porosity estimated from the distance between the bristles. The variations of the permeability are thus deduced for each principal direction and for Reynolds numbers and porosities characteristic for brush seal. The leakage flow rates predicted by the present approach are compared with experimental results from the literature. The results depict also the variations of the pressures, of the local Reynolds number, of the permeability, and of the porosity through the entire brush seal.


2015 ◽  
Vol 12 (12) ◽  
pp. 12987-13018
Author(s):  
C. I. Meier ◽  
J. S. Moraga ◽  
G. Pranzini ◽  
P. Molnar

Abstract. Traditional frequency analysis of annual precipitation requires the fitting of a probability model to yearly precipitation totals. There are three potential problems with this approach: a long record (at least 25 ~ 30 years) is required in order to fit the model, years with missing data cannot be used, and the data need to be homogeneous. To overcome these limitations, we test an alternative methodology proposed by Eagleson (1978), based on the derived distribution approach (DDA). This allows for better estimation of the probability density function (pdf) of annual rainfall without requiring long records, provided that high-resolution precipitation data are available to derive external storm properties. The DDA combines marginal pdfs for storm depth and inter-arrival time to arrive at an analytical formulation of the distribution of annual precipitation under the assumption of independence between events. We tested the DDA at two temperate locations in different climates (Concepción, Chile, and Lugano, Switzerland), quantifying the effects of record length. Our results show that, as compared to the fitting of a normal or log-normal distribution, the DDA significantly reduces the uncertainty in annual precipitation estimates (especially interannual variability) when only short records are available. The DDA also reduces the bias in annual precipitation quantiles with high return periods. We also show that using precipitation data aggregated every 24 h, as commonly available at most weather stations, introduces a noticeable bias in the DDA. Our results point to the tangible benefits of installing high-resolution (hourly or less) precipitation gauges at previously ungauged locations. We show that the DDA, in combination with high resolution gauging, provides more accurate and less uncertain estimates of long-term precipitation statistics such as interannual variability and quantiles of annual precipitation with high return periods even for records as short as 5 years.


2021 ◽  
Vol 2 (2) ◽  
pp. 60-67
Author(s):  
Rashidul Hasan Rashidul Hasan

The estimation of a suitable probability model depends mainly on the features of available temperature data at a particular place. As a result, existing probability distributions must be evaluated to establish an appropriate probability model that can deliver precise temperature estimation. The study intended to estimate the best-fitted probability model for the monthly maximum temperature at the Sylhet station in Bangladesh from January 2002 to December 2012 using several statistical analyses. Ten continuous probability distributions such as Exponential, Gamma, Log-Gamma, Beta, Normal, Log-Normal, Erlang, Power Function, Rayleigh, and Weibull distributions were fitted for these tasks using the maximum likelihood technique. To determine the model’s fit to the temperature data, several goodness-of-fit tests were applied, including the Kolmogorov-Smirnov test, Anderson-Darling test, and Chi-square test. The Beta distribution is found to be the best-fitted probability distribution based on the largest overall score derived from three specified goodness-of-fit tests for the monthly maximum temperature data at the Sylhet station.


1977 ◽  
Vol 83 (3) ◽  
pp. 547-567 ◽  
Author(s):  
R. M. Williams ◽  
C. A. Paulson

High-frequency fluctuations in temperature and velocity were measured at a height of 2 m above a harvested, nearly level field of rye grass. Conditions were both stably and unstably stratified. Reynolds numbers ranged from 370000 to 740000. Measurements of velocity were made with a hot-wire anemometer and measurements of temperature with a platinum resistance element which had a diameter of 0[sdot ]5 μm and a length of 1 mm. Thirteen runs ranging in length from 78 to 238 s were analysed.Spectra of velocity fluctuations are consistent with previously reported universal forms. Spectra of temperature, however, exhibit an increase in slope with increasing wavenumber as the maximum in the one-dimensional dissipation spectrum is approached. The peak of the one-dimensional dissipation spectrum for temperature fluctuations occurs at a higher wavenumber than that of simultaneous spectra of the dissipation of velocity fluctuations. It is suggested that the change in slope of the temperature spectra and the dissimilarity between temperature and velocity spectra may be due to spatial dissimilarity in the dissipation of temperature and velocity fluctuations. The temperature spectra are compared with a theoretical prediction for fluids with large Prandtl number, due to Batchelor (1959). Even though air has a Prandtl number of 0[sdot ]7, the observations are in qualitative agreement with predictions of the theory. The non-dimensional wavenumber at which the increase in slope occurs is about 0[sdot ]02, in good agreement with observations in the ocean reported by Grantet al. (1968).For the two runs for which the stratification was stable, the normalized spectra of the temperature derivative fall on average slightly below the mean of the spectra of the remaining runs in the range in which the slope is approximately one-third. Hence the Reynolds number may not have always been sufficiently high to satisfy completely the conditions for an inertial subrange.Universal inertial-subrange constants were directly evaluated from one-dimensional dissipation spectra and found to be 0[sdot ]54 and 1[sdot ]00 for velocity and temperature, respectively. The constant for velocity is consistent with previously reported values, while the value for temperature differs from some of the previous direct estimates but is only 20% greater than the mean of the indirect estimates. This discrepancy may be explained by the neglect in the indirect estimates of the divergence terms in the conservation equation for the variance of temperature fluctuations. There is weak evidence that the one-dimensional constant, and hence the temperature spectra, may depend upon the turbulence Reynolds number, which varied from 1200 to 4300 in the observations reported.


Sign in / Sign up

Export Citation Format

Share Document