Sinusoidal forcing of a turbulent separation bubble

1997 ◽  
Vol 342 ◽  
pp. 119-139 ◽  
Author(s):  
M. KIYA ◽  
M. SHIMIZU ◽  
O. MOCHIZUKI

A turbulent separation bubble is forced by single- and double-frequency sinusoidal disturbances, with the emphasis placed on the reattachment length as a function of the forcing amplitude and frequency. The separation bubble is that formed along the side of a blunt circular cylinder with a square leading edge. In single-frequency forcing, the reattachment length attains a minimum at a particular forcing frequency, F, which scales with the frequency of shedding of vortices from the reattachment region of the separated shear layer. A flow model is presented to interpret the frequency F. Forcing of sufficiently high amplitude eliminates the recirculating region in a range of the forcing frequency. Flow visualization and a survey of the mean flow and turbulence properties demonstrate how the flow in the separated shear layer is modified by the forcing. In double-frequency forcing, the superposition of the F-component on its higher or subharmonic components is considered. A non-resonant combination of the two frequencies is also considered.

Author(s):  
K. Anand ◽  
S. Sarkar ◽  
N. Thilakan

The behaviour of a separated shear layer past a semi-circular leading edge flat plate, its transition and reattachment downstream to separation are investigated for different imposed pressure gradients. The experiments are carried out in a blowing tunnel for a Reynolds number of 2.44×105 (based on chord and free-stream velocity). The mean flow characteristics and the instantaneous vector field are documented using a two-component LDA and a planar PIV, whereas, surface pressures are measured with Electronically scanned pressure (ESP). The onset of separation occurs near the blend point for all values of β (flap angle deflection), however, a considerable shift is noticed in the point of reattachment. The dimensions of the separation bubble is highly susceptible to β and plays an important role in the activity of the outer shear layer. Instantaneous results from PIV show a significant unsteadiness in the shear layer at about 30% of the bubble length, which is further amplified in the second half of the bubble leading to three-dimensional motions. The reverse flow velocity is higher for a favourable pressure gradient (β = +30°) and is found to be 21% of the free stream velocity. The Reynolds number calculated based on ll (laminar shear layer length), falls in the range of 0.9×104 to 1.4×104. The numerical values concerning the criterion for separation and reattachment agree well with the available literature.


Author(s):  
Samson AnnapuReddy ◽  
S. Sarkar

Aerodynamic interactions of a separated shear layer from the semi-circular leading edge of a constant thickness aerofoil model with jets ejecting in the vicinity of reattachment from a row of discrete holes at an angle of 30° in the streamwise direction are elucidated. Experiments are carried out for two Reynolds numbers (ReD) 25000 and 55000 (based on the leading-edge diameter) and two velocity ratios (V.R) 0.5 and 1. The time-averaged velocity and turbulence quantities are measured using Laser-Doppler Anemometry (LDA) at different streamwise locations along the centre line of the jet, while the instantaneous flow filed is obtained using Particle Image Velocimetry (PIV). Measurements reveal that the flow undergoes separation at the blending point of semi-circle and flat plate owing to sudden change in geometry. It is observed that in the absence of the jet, the separated shear layer undergoes transition with formation Kelvin-Helmholtz (K-H) rolls and a significant growth of Reynolds stress in the second-half of the bubble is evident. With injection, the separation bubble length in the upstream of jet has decreased with increased growth rate of velocity fluctuations. However, the characteristics of the flow in the separated region remains almost unchanged and the transition criteria even follows the universal intermittency characteristics of Dhawan and Narasimha [35]. The instantaneous results elucidate that K-H rolls from the separated shear layer interact with the injected jet resulting in its oscillation. In the downstream of injection, the presence of the jet is felt with enhanced turbulence activities in the outer layer, particularly for high V.R. Further, the onset and end of transition of the separated flow are compared with correlations available in the literature.


Author(s):  
A Samson ◽  
S Sarkar

This paper describes the dynamics of a laminar separation bubble formed on the semi-circular leading edge of constant thickness aerofoil model. Detailed experimental studies are carried out in a low-speed wind tunnel, where surface pressure and time-averaged velocity in the separated region and as well as in the downstream are presented along with flow field visualisations through PIV for various Reynolds numbers ranging from 25,000 to 75,000 (based on the leading edge diameter). The results illustrate that the separated shear layer is laminar up to 20% of separation length and then the perturbations are amplified in the second half attributing to breakdown and reattachment. The bubble length is highly susceptible to change in Reynolds number and plays an important role in outer layer activities. Further, the transition of a separated shear layer is studied through variation of intermittency factor and comparing with existing correlations available in the literature for attached flow and as well as separated flow. Transition of the separated shear layer occurs through formation of K-H rolls, where the intermittency following spot propagation theory appears valid. The predominant shedding frequency when normalised with respect to the momentum thickness at separation remains almost constant with change in Reynolds number. The relaxation is slow after reattachment and the flow takes about five bubble lengths to approach a canonical layer.


2013 ◽  
Vol 136 (5) ◽  
Author(s):  
Chiara Bernardini ◽  
Stuart I. Benton ◽  
Jen-Ping Chen ◽  
Jeffrey P. Bons

The mechanism of separation control by sound excitation is investigated on the aft-loaded low-pressure turbine (LPT) blade profile, the L1A, which experiences a large boundary layer separation at low Reynolds numbers. Previous work by the authors has shown that on a laminar separation bubble such as that experienced by the front-loaded L2F profile, sound excitation control has its best performance at the most unstable frequency of the shear layer due to the exploitation of the linear instability mechanism. The different loading distribution on the L1A increases the distance of the separated shear layer from the wall and the exploitation of the same linear mechanism is no longer effective in these conditions. However, significant control authority is found in the range of the first subharmonic of the natural unstable frequency. The amplitude of forced excitation required for significant wake loss reduction is higher than that needed when exploiting linear instability, but unlike the latter case, no threshold amplitude is found. The fluid-dynamics mechanisms under these conditions are investigated by particle image velocimetry (PIV) measurements. Phase-locked PIV data gives insight into the growth and development of structures as they are shed from the shear layer and merge to lock into the excited frequency. Unlike near-wall laminar separation sound control, it is found that when such large separated shear layers occur, sound excitation at subharmonics of the fundamental frequency is still effective with high-Tu levels.


Author(s):  
A. Samson ◽  
S. Sarkar

The dynamics of separation bubble under the influence of continuous jets ejected near the semi-circular leading edge of a flat plate is presented. Two different streamwise injection angles 30° and 60° and velocity ratios 0.5 and 1 for Re = 25000 and 55000 (based on the leading-edge diameter) are considered here. The flow visualizations illustrating jet and separated layer interactions have been carried out with PIV. The objective of this study is to understand the mutual interactions of separation bubble and the injected jets. It is observed that flow separates at the blending point of semi-circular arc and flat plate. The separated shear layer is laminar up to 20% of separation length after which perturbations are amplified and grows in the second-half of the bubble leading to breakdown and reattachment. Blowing has significantly affected the bubble length and thus, turbulence generation. Instantaneous flow visualizations supports the unsteadiness and development of three-dimensional motions leading to formation of Kelvin-Helmholtz rolls and shedding of large-scale vortices due to jet and bubble interactions. In turn, it has been seen that both the spanwise and streamwise dilution of injected air is highly influenced by the separation bubble.


Author(s):  
Bryn N. Ubald ◽  
Jiahuan Cui ◽  
Rob Watson ◽  
Paul G. Tucker ◽  
Shahrokh Shahpar

The measurement accuracy of the temperature/pressure probe mounted at the leading edge of a turbine/compressor blade is crucial for estimating the fuel consumption of a turbo-fan engine. Apart from the measurement error itself, the probe also introduces extra losses. This again would compromise the measurement accuracy of the overall engine efficiency. This paper utilizes high-fidelity numerical analysis to understand the complex flow around the probe and quantify the loss sources due to the interaction between the blade and its instrumentation. With the inclusion of leading edge probes, three dimensional flow phenomena develop, with some flow features acting in a similar manner to a jet in cross flow. The separated flow formed at the leading edge of the probe blocks a large area of the probe bleed-hole, which is one of the reasons why the probe accuracy can be sensitive to Mach and Reynolds numbers. The addition of 4% free stream turbulence is shown to have a marginal impact on the jet trajectory originated from the probe bleedhole. However, a slight reduction is observed in the size of the separation bubble formed at the leading edge of the probe, preceding the two bleedhole exits. The free stream turbulence also has a significant impact on the size of the separation bubble near the trailing edge of the blade. With the addition of the free stream turbulence, the loss observed within the trailing edge wake is reduced. More than 50% of the losses at the cascade exit are generated by the leading edge probe. A breakdown of the dissipation terms from the mean flow kinetic energy equation demonstrates that the Reynolds stresses are the key terms in dissipating the counter rotating vortex pairs with the viscous stresses responsible for the boundary layer.


Author(s):  
Souvik Naskar ◽  
S. Sarkar

Abstract Modern commercial airliners use multi-element aerofoils to enhance take-off and landing performance. Further, multielement aerofoil configurations have been shown to improve the aerodynamic characteristics of wind turbines. In the present study, high resolution Large Eddy Simulation (LES) is used to explore the low Reynolds Number (Re = 0.832 × 104) aerodynamics of a 30P30N multi-element aerofoil at an angle of attack, α = 4°. In the present simulation, wake shed from a leading edge element or slat is found to interact with the separated shear layer developing over the suction surface of the main wing. High receptivity of shear layer via amplification of free-stream turbulence leads to rollup and breakdown, forming a large separation bubble. A transient growth of fluctuations is observed in the first half of the separation bubble, where levels of turbulence becomes maximum near the reattachment and then decay depicting saturation of turbulence. Results of the present LES are found to be in close agreement with the experiment depicting high vortical activity in the outer layer. Some features of the flow field here are similar to those occur due to interactions of passing wake and the separated boundary layer on the suction surface of high lift low pressure turbine blades.


Author(s):  
Masaki Yamagishi ◽  
Tomoko Togano ◽  
Shinichi Tashiro

The vortex structures in a separated region are generated by the motion of the separated shear layer caused by the introduction of periodic fluctuation. The main cause of the motion of the separated shear layer is the external fluctuation with the characteristic frequency. In order to investigate the principal motion of the velocity field, phase averaging was conducted to the velocity signals obtained by single hot-wire measurement. In phase averaging, wavelet analysis was applied to obtain the dominant frequency and the characteristic phase in the fluctuation. The profiles and the contours of the phase-averaged velocity could be found and discussed. The profiles vary dynamically at each phase and show the periodic motion of the shear layer. The separated shear layer flutters with the external fluctuation in the mean flow. If the suitable frequency is selected in the external fluctuation, the separated region disappears in almost all each phases owing to the depression of the shear layer near the wall.


Author(s):  
S. Sarkar ◽  
Jasim Sadique

The unsteady flow physics and heat transfer characteristics due to interactions of periodic passing wakes with a separated boundary layer are studied with the help of Large-eddy simulations (LES). A flat plate with a semicircular leading edge is employed to obtain the separated boundary layer. Wake data extracted from precursor LES of flow past a cylinder are used to replicate a moving bar that generates wakes in front of a cascade (in this case an infinite row of flat plates). This setup is a simplified representation of the rotor-stator interaction in turbomachinery. With a uniform inlet, the laminar boundary layer separates near the leading edge, undergoes transition due to amplification of the disturbances, becomes turbulent and finally reattaches forming a bubble. In the presence of oncoming wakes, the characteristics of the separated layer have changed and the impinging wakes are found to be the mechanism affecting the reattachment. Phase averaged results illustrate the periodic behaviour of both flow and heat transfer. Large undulations in the phase-averaged skin friction and Nusselt number distributions can be attributed to the excitation of separated shear layer by convective wakes forming coherent vortices, which are being shed and convect downstream. This interaction also breaks the bubble into multiple bubbles. Further, the transition of the shear layer during the wake-induced path is governed by a mechanism that involves the convection of these vortices followed by increased fluctuations.


Sign in / Sign up

Export Citation Format

Share Document