An analysis of rotating shear flow using linear theory and DNS and LES results

1997 ◽  
Vol 347 ◽  
pp. 171-195 ◽  
Author(s):  
A. SALHI ◽  
C. CAMBON

The development of turbulence is investigated in the presence of a mean plane shear flow (rate S) rotating with angular velocity vector (rate Ω) perpendicular to its plane. An important motivation was generalizing the work by Lee, Kim & Moin (1990) to rotating shear flow, in particular detailed comparisons of homogeneous rapid distortion theory (RDT) results and the databases of homogeneous and channel flow direct numerical simulations (DNS). Linear analysis and related RDT are used starting from the linearized equations governing the fluctuating velocity field. The parameterization based on the value of the Bradshaw–Richardson number B=R(1+R) (with R=−2Ω/S) is checked against complete linear solutions. Owing to the pressure fluctuation, the dynamics is not governed entirely by the parameter B, and the subsequent breaking of symmetry (between the R and −1 −R cases) is investigated. New analytical solutions for the ‘two-dimensional energy components’ [Escr ](l)ij =Eij(kl=0, t) (i.e. the limits at kl=0 of the one-dimensional energy spectra) are calculated by inviscid and viscous RDT, for various ratios Ω/S and both streamwise l=1 and spanwise l=3 directions. Structure effects (streak-like tendencies, dimensionality) in rotating shear flow are discussed through these quantities and more conventional second-order statistics. In order to compare in a quantitative way RDT solutions for single-point statistics with available large-eddy simulation (LES) data (Bardina, Ferziger & Reynolds 1983), an ‘effective viscosity’ model (following Townsend) is used, yielding an impressive agreement.

Author(s):  
Jongwook Joo ◽  
Gorazd Medic ◽  
Om Sharma

Large eddy simulations over a NACA65 compressor cascade with roughness were performed for multiple roughness heights. The experiments show flow separation as airfoil roughness is increased. In LES computations, surface roughness was represented by regularly arranged discrete elements using guidelines from Schlichting. Results from wall-resolved LES indicate that specifying an equivalent sandgrain roughness height larger than the one in experiments is required to reproduce the same effects observed in experiments. This highlights the persisting uncertainty with matching the experimental roughness geometry in LES computations, pointing towards surface imaging and digitization as a potential solution. Some initial analysis of flow physics has been conducted with the aim of guiding the RANS modeling for roughness.


2005 ◽  
Vol 128 (2) ◽  
pp. 239-246 ◽  
Author(s):  
Eric Tromeur ◽  
Eric Garnier ◽  
Pierre Sagaut

In order to assess the capability of the Sutton model to evaluate aero-optical effects in a turbulent boundary layer, large-eddy simulation (LES) evolving spatially and Reynolds averaged Navier-Stokes (RANS) computations are carried out at Mach number equal to 0.9. First aerodynamic fields are proved to compare favorably with theoretical and experimental results. Once validated, the characteristics of the boundary layer allow us to obtain information concerning optical beam degradation. On the one hand, the density field is used to compute phase distortion directly and, on the other hand, by means of the Sutton model. Therefore, LES and RANS simulations allow us to study optical models and the validity of their assumptions. Finally, LES is proved to be considered as a reference tool to evaluate aero-optical effects.


2015 ◽  
Vol 17 (1) ◽  
pp. 245-255 ◽  
Author(s):  
Matteo Colli ◽  
Luca G. Lanza ◽  
Roy Rasmussen ◽  
Julie M. Thériault

Abstract The use of windshields to reduce the impact of wind on snow measurements is common. This paper investigates the catching performance of shielded and unshielded gauges using numerical simulations. In Part II, the role of the windshield and gauge aerodynamics, as well as the varying flow field due to the turbulence generated by the shield–gauge configuration, in reducing the catch efficiency is investigated. This builds on the computational fluid dynamics results obtained in Part I, where the airflow patterns in the proximity of an unshielded and single Alter shielded Geonor T-200B gauge are obtained using both time-independent [Reynolds-averaged Navier–Stokes (RANS)] and time-dependent [large-eddy simulation (LES)] approaches. A Lagrangian trajectory model is used to track different types of snowflakes (wet and dry snow) and to assess the variation of the resulting gauge catching performance with the wind speed. The collection efficiency obtained with the LES approach is generally lower than the one obtained with the RANS approach. This is because of the impact of the LES-resolved turbulence above the gauge orifice rim. The comparison between the collection efficiency values obtained in case of shielded and unshielded gauge validates the choice of installing a single Alter shield in a windy environment. However, time-dependent simulations show that the propagating turbulent structures produced by the aerodynamic response of the upwind single Alter blades have an impact on the collection efficiency. Comparison with field observations provides the validation background for the model results.


2015 ◽  
Vol 137 (10) ◽  
Author(s):  
Antonio Posa ◽  
Antonio Lippolis ◽  
Elias Balaras

The flow through turbopumps is characterized by highly unsteady phenomena at part load conditions, involving large separation and generation of vortical structures. This behavior is strongly dependent on the interaction between rotating and steady parts, which is significantly modified, compared to the one at the design flow rate. Therefore, at off-design conditions, eddy-resolving computations are more suitable to analyze the complex physics occurring inside turbomachinery channels. In this work the large eddy simulation (LES), coupled with an immersed-boundary (IB) method, is utilized to study a mixed-flow pump at a reduced flow rate, equivalent to 40% of the nominal one. The present approach has been already validated in a previous study, where a satisfactory agreement with two-dimensional (2D) particle image velocimetry (PIV) experiments has been shown at design conditions. In this paper a comparison with the LES results at the optimal flow rate is also proposed, in order to understand the important modifications of the flow occurring at part loads.


Sign in / Sign up

Export Citation Format

Share Document