scholarly journals Climatic and glaciological information inferred from air-content measurements of a Law Dome (East Antarctica) ice core

1999 ◽  
Vol 45 (150) ◽  
pp. 255-263 ◽  
Author(s):  
Marc Delmotte ◽  
Dominique Raynaud ◽  
Vin Morgan ◽  
Jean Jouzel

AbstractThe total air content(V)of ice has been measured along the Dome Summit South (DSS) core from Law Dome, East Antarctica. The main features of this record are the very well-preserved sub-annual fluctuations ofV(down to at least 900 m depth) and the significant increase of theVvalues during the last deglaciation. The sub-annual variations reflect changes in close-off porosity, and we interpret theVseasonal peaks as tracers of depth-hoar layers. For the longer time-scale, the largeVfluctuations observed are interpreted in terms of elevation and/or close-off porosity changes under different assumptions. We analyze the possible influence of a different global pressure field and/or a change in seasonal temperature and precipitation cycles during the last glacial period. Our estimates of surface elevation changes derived from theVdata are then compared with independent reconstructions of past elevations.

1999 ◽  
Vol 45 (150) ◽  
pp. 255-263 ◽  
Author(s):  
Marc Delmotte ◽  
Dominique Raynaud ◽  
Vin Morgan ◽  
Jean Jouzel

AbstractThe total air content (V) of ice has been measured along the Dome Summit South (DSS) core from Law Dome, East Antarctica. The main features of this record are the very well-preserved sub-annual fluctuations of V (down to at least 900 m depth) and the significant increase of the V values during the last deglaciation. The sub-annual variations reflect changes in close-off porosity, and we interpret the V seasonal peaks as tracers of depth-hoar layers. For the longer time-scale, the large V fluctuations observed are interpreted in terms of elevation and/or close-off porosity changes under different assumptions. We analyze the possible influence of a different global pressure field and/or a change in seasonal temperature and precipitation cycles during the last glacial period. Our estimates of surface elevation changes derived from the V data are then compared with independent reconstructions of past elevations.


1990 ◽  
Vol 14 ◽  
pp. 323-327 ◽  
Author(s):  
T.D. Yao ◽  
J.R. Petit ◽  
J. Jouzel ◽  
C. Lorius ◽  
P. Duval

Deuterium content, microparticle concentration, ice crystal size and bubble concentration have been studied along an 82 m ice core drilled down to the bedrock in the ice-sheet margin in East Antarctica. The Last Glacial Maximum (LGM) is distinctly marked by low deuterium content, high concentration of microparticles, small ice crystals and high bubble concentrations. This core covers a significant part of the Last Glacial Period with ice from a warmer period recovered around a depth of 60 m.


2021 ◽  
Vol 17 (4) ◽  
pp. 1627-1643
Author(s):  
Loïc Schmidely ◽  
Christoph Nehrbass-Ahles ◽  
Jochen Schmitt ◽  
Juhyeong Han ◽  
Lucas Silva ◽  
...  

Abstract. Deglaciations are characterized by the largest natural changes in methane (CH4) and nitrous oxide (N2O) concentrations of the past 800 000 years. Reconstructions of millennial- to centennial-scale variability within these periods are mostly restricted to the last deglaciation. In this study, we present composite records of CH4 and N2O concentrations from the EPICA Dome C ice core covering the penultimate deglaciation at temporal resolutions of ∼100 years. Our data permit the identification of centennial-scale fluctuations during the transition from glacial to interglacial levels. At ∼134 000 and ∼129 000 years before present (hereafter ka), both CH4 and N2O increased on centennial timescales. These abrupt rises are similar to the fluctuations associated with the Dansgaard–Oeschger events identified in the last glacial period. In addition, gradually rising N2O levels at ∼130 ka resemble a pattern of increasing N2O concentrations on millennial timescales characterizing the later part of Heinrich stadials. Overall, the events in CH4 and N2O during the penultimate deglaciation exhibit modes of variability that are also found during the last deglaciation and glacial cycle, suggesting that the processes leading to changes in emission during the transitions were similar but their timing differed.


1989 ◽  
Vol 31 (2) ◽  
pp. 135-150 ◽  
Author(s):  
J. Jouzel ◽  
G. Raisbeck ◽  
J.P. Benoist ◽  
F. Yiou ◽  
C. Lorius ◽  
...  

AbstractThree ice cores drilled in the central part of the Antarctic continent extend back to the last glacial period: one from West Antarctica (Byrd) and two from East Antarctica (Vostok and Dome C). This period is also partly covered by a few cores from the coastal areas. In these cores, climatic information is mostly derived from the isotopic profiles (δD or δ18O) from which surface temperature and, more indirectly, precipitation rate can be estimated. The main objective has been to compare thoroughly the three deep ice cores for the main part of the last glacial period (from ca. 65,000–15,000 yr B.P.). The time scales have been examined in detail and a new 40,000 yr chronology for the Dome C core adopted. Special emphasis is placed on the link between the concentration of 10Be and past accumulation changes and on the use of peaks in the concentration of this cosmogenic isotope as stratigraphic markers. Elevation changes of the ice sheet, derived from gas content and isotopic data, bear directly on interpretations of past temperature and precipitation rate changes.


1990 ◽  
Vol 14 ◽  
pp. 323-327 ◽  
Author(s):  
T.D. Yao ◽  
J.R. Petit ◽  
J. Jouzel ◽  
C. Lorius ◽  
P. Duval

Deuterium content, microparticle concentration, ice crystal size and bubble concentration have been studied along an 82 m ice core drilled down to the bedrock in the ice-sheet margin in East Antarctica. The Last Glacial Maximum (LGM) is distinctly marked by low deuterium content, high concentration of microparticles, small ice crystals and high bubble concentrations. This core covers a significant part of the Last Glacial Period with ice from a warmer period recovered around a depth of 60 m.


Geology ◽  
2021 ◽  
Author(s):  
Thomas V. Lowell ◽  
Meredith A. Kelly ◽  
Jennifer A. Howley ◽  
Timothy G. Fisher ◽  
Peter J. Barnett ◽  
...  

The Laurentide Ice Sheet (LIS) was the largest ice sheet during the last glacial period. An accurate representation of its behavior during the last deglaciation is critical to understanding its influence on and response to a changing climate. We use 10Be dating and Bayesian modeling to track the recession of the southwest sector of the Labrador Dome of the LIS along an ~500-km-long transect west of Lake Superior during the last deglaciation. This transect reflects terrestrial ice-margin retreat and crosses multiple moraine sets, with the southwestern part of the transect deglaciated by ca. 19 ka and the northeastern part deglaciated by ca. 10 ka. The predominant behavior of the ice margin during this interval is near-constant retreat with retreat rates varying between ~59 m/a and 38 m/a. The moraine sets mark standstills and/or readvances that in total constitute only ~17% of the retreat interval. The spatial and temporal pattern of ice-margin retreat tracked here differs from existing reconstructions that are based on using isochrons to define ice-margin positions. Acknowledging the uncertainties associated with the modeled ages of ice-margin retreat, we suggest that the overall retreat pattern is consistent with forcing by a gradual increase in Northern Hemisphere, high-latitude summer insolation. The pattern of ice-margin retreat is inconsistent with Greenland ice-core temperature records, and thus these records may not be suitable to drive models of the LIS.


2017 ◽  
Vol 13 (4) ◽  
pp. 345-358 ◽  
Author(s):  
Marília C. Campos ◽  
Cristiano M. Chiessi ◽  
Ines Voigt ◽  
Alberto R. Piola ◽  
Henning Kuhnert ◽  
...  

Abstract. Abrupt millennial-scale climate change events of the last deglaciation (i.e. Heinrich Stadial 1 and the Younger Dryas) were accompanied by marked increases in atmospheric CO2 (CO2atm) and decreases in its stable carbon isotopic ratios (δ13C), i.e. δ13CO2atm, presumably due to outgassing from the ocean. However, information on the preceding Heinrich Stadials during the last glacial period is scarce. Here we present δ13C records from two species of planktonic foraminifera from the western South Atlantic that reveal major decreases (up to 1 ‰) during Heinrich Stadials 3 and 2. These δ13C decreases are most likely related to millennial-scale periods of weakening of the Atlantic meridional overturning circulation and the consequent increase (decrease) in CO2atm (δ13CO2atm). We hypothesise two mechanisms that could account for the decreases observed in our records, namely strengthening of Southern Ocean deep-water ventilation and weakening of the biological pump. Additionally, we suggest that air–sea gas exchange could have contributed to the observed δ13C decreases. Together with other lines of evidence, our data are consistent with the hypothesis that the CO2 added to the atmosphere during abrupt millennial-scale climate change events of the last glacial period also originated in the ocean and reached the atmosphere by outgassing. The temporal evolution of δ13C during Heinrich Stadials 3 and 2 in our records is characterized by two relative minima separated by a relative maximum. This w structure is also found in North Atlantic and South American records, further suggesting that such a structure is a pervasive feature of Heinrich Stadial 2 and, possibly, also Heinrich Stadial 3.


2013 ◽  
Vol 59 (218) ◽  
pp. 1117-1128 ◽  
Author(s):  

AbstractThe IceCube Neutrino Observatory and its prototype, AMANDA, were built in South Pole ice, using powerful hot-water drills to cleanly bore >100 holes to depths up to 2500 m. The construction of these particle physics detectors provided a unique opportunity to examine the deep ice sheet using a variety of novel techniques. We made high-resolution particulate profiles with a laser dust logger in eight of the boreholes during detector commissioning between 2004 and 2010. The South Pole laser logs are among the most clearly resolved measurements of Antarctic dust strata during the last glacial period and can be used to reconstruct paleoclimate records in exceptional detail. Here we use manual and algorithmic matching to synthesize our South Pole measurements with ice-core and logging data from Dome C, East Antarctica. We derive impurity concentration, precision chronology, annual-layer thickness, local spatial variability, and identify several widespread volcanic ash depositions useful for dating. We also examine the interval around ∼74 ka recently isolated with radiometric dating to bracket the Toba (Sumatra) supereruption.


2020 ◽  
Author(s):  
Loïc Schmidely ◽  
Christoph Nehrbass-Ahles ◽  
Jochen Schmitt ◽  
Juhyeong Han ◽  
Lucas Silva ◽  
...  

Abstract. Deglaciations are characterized by the largest natural changes in methane (CH4) and nitrous oxide (N2O) concentrations of the past 800 thousand years. Reconstructions of millennial to centennial-scale variability within these periods are mostly restricted to the last deglaciation. In this study, we present composite records of CH4 and N2O concentrations from the EPICA Dome C ice core covering the penultimate deglaciation at temporal resolutions of about ~ 100 years. Our data permit the identification of centennial-scale fluctuations standing out of the overall transition to interglacial levels. These features occurred in concert with reinvigorations of the Atlantic Meridional Overturning Circulation (AMOC) and northward shifts of the Intertropical Convergence Zone. The abrupt CH4 and N2O rises at about ~ 134 and ~ 128 thousand of years before present (hereafter ka BP) are assimilated to the fluctuations accompanying the Dansgaard–Oeschger events of the last glacial period, while rising N2O levels at ~ 130.5 ka BP are assimilated to a pattern of increasing N2O concentrations that characterized the end of Heinrich stadials. We suggest the 130.5-ka event to be driven by a partial reinvigoration of the AMOC. Overall, the CH4 and N2O fluctuations during the penultimate deglaciation exhibit modes of variability that are also found during the last deglaciation. However, trace gas responses may differ for similar type of climatic events, as exemplified by the reduced amplitude and duration of the 134-ka event compared to the fluctuations of the Bølling–Allerød during the last deglaciation.


2007 ◽  
Vol 3 (3) ◽  
pp. 527-540 ◽  
Author(s):  
L. Loulergue ◽  
F. Parrenin ◽  
T. Blunier ◽  
J.-M. Barnola ◽  
R. Spahni ◽  
...  

Abstract. Gas is trapped in polar ice sheets at ~50–120 m below the surface and is therefore younger than the surrounding ice. Firn densification models are used to evaluate this ice age-gas age difference (Δage) in the past. However, such models need to be validated by data, in particular for periods colder than present day on the East Antarctic plateau. Here we bring new constraints to test a firn densification model applied to the EPICA Dome C (EDC) site for the last 50 kyr, by linking the EDC ice core to the EPICA Dronning Maud Land (EDML) ice core, both in the ice phase (using volcanic horizons) and in the gas phase (using rapid methane variations). We also use the structured 10Be peak, occurring 41 kyr before present (BP) and due to the low geomagnetic field associated with the Laschamp event, to experimentally estimate the Δage during this event. Our results seem to reveal an overestimate of the Δage by the firn densification model during the last glacial period at EDC. Tests with different accumulation rates and temperature scenarios do not entirely resolve this discrepancy. Although the exact reasons for the Δage overestimate at the two EPICA sites remain unknown at this stage, we conclude that current densification model simulations have deficits under glacial climatic conditions. Whatever the cause of the Δage overestimate, our finding suggests that the phase relationship between CO2 and EDC temperature previously inferred for the start of the last deglaciation (lag of CO2 by 800±600 yr) seems to be overestimated.


Sign in / Sign up

Export Citation Format

Share Document