scholarly journals Dynamics and Structure of Griesgletscher, Switzerland

1980 ◽  
Vol 25 (92) ◽  
pp. 215-228 ◽  
Author(s):  
M. J. Hambrey ◽  
A. G. Milnes ◽  
H. Siegenthaler

AbstractA detailed investigation has been carried out on the dynamics of an Alpine valley glacier of relatively simple shape and the results are considered in relation to the development of secondary structures. Ice velocity reaches a maximum near the top of a small ice fall (40 m a−1) which also coincides approximately with the equilibrium line. Flow lines converge in the accumulation area but are roughly parallel in the ablation area. The “regional” strain-rate pattern is rather complex. Approximate longitudinal extension is evident in the accumulation area and strain-rates reach high values at the south margin and in the ice fall (up to 0.12 a−1). In the ablation area, strain-rates are comparatively small and in general indicate longitudinal compression. “Local” deformation rates obtained in the area beneath the ice fall and along a flow line near one of the margins reveal complex patterns of deformation within small areas.There is no clear relationship between foliation and strain-rates (and by analogy stresses), except in the case of longitudinal foliation in marginal areas which, if actively developing, lies approximately parallel to a direction of maximum shear strain-rate. It is more important to consider the relationship of this structure to strain history. Results from this study indicate that, regardless of the initial orientation of the foliation in relation to the strain ellipse, it attains approximate parallelism with the long axis of the ellipse as deformation progresses.It is also shown that many foliations originate from pre-existing layered structures such as stratification or crevasse traces. This problem is discussed particularly with reference to an arcuate foliation which originates in the ice fall and is believed to represent tensional veins, subsequently subjected to compressive strain within and below the ice fall.

1980 ◽  
Vol 25 (92) ◽  
pp. 215-228 ◽  
Author(s):  
M. J. Hambrey ◽  
A. G. Milnes ◽  
H. Siegenthaler

AbstractA detailed investigation has been carried out on the dynamics of an Alpine valley glacier of relatively simple shape and the results are considered in relation to the development of secondary structures. Ice velocity reaches a maximum near the top of a small ice fall (40 m a−1) which also coincides approximately with the equilibrium line. Flow lines converge in the accumulation area but are roughly parallel in the ablation area. The “regional” strain-rate pattern is rather complex. Approximate longitudinal extension is evident in the accumulation area and strain-rates reach high values at the south margin and in the ice fall (up to 0.12 a−1). In the ablation area, strain-rates are comparatively small and in general indicate longitudinal compression. “Local” deformation rates obtained in the area beneath the ice fall and along a flow line near one of the margins reveal complex patterns of deformation within small areas.There is no clear relationship between foliation and strain-rates (and by analogy stresses), except in the case of longitudinal foliation in marginal areas which, if actively developing, lies approximately parallel to a direction of maximum shear strain-rate. It is more important to consider the relationship of this structure to strain history. Results from this study indicate that, regardless of the initial orientation of the foliation in relation to the strain ellipse, it attains approximate parallelism with the long axis of the ellipse as deformation progresses.It is also shown that many foliations originate from pre-existing layered structures such as stratification or crevasse traces. This problem is discussed particularly with reference to an arcuate foliation which originates in the ice fall and is believed to represent tensional veins, subsequently subjected to compressive strain within and below the ice fall.


Author(s):  
Koji Dozaki ◽  
Hiromasa Chitose ◽  
Hiroshi Ogawa ◽  
Hideo Machida

The dynamic aspects of loading conditions for reactor internals, piping and the like, are thought to play important roles in the initiation of failures due, for example, to stress corrosion cracking (SCC) and fatigue. Some reports show that a strain rate on the order of 10−7 s−1 most affects susceptibility to SCC in the BWR reactor water environment. Environmental fatigue, which exhibits a shorter fatigue life in reactor water than that in air, is considered to have a remarkable correlation with strain rate and its affect on fatigue life. Despite its significant affect on SCC and fatigue, the actual strain rate of components is not known and practical evaluation methods have not been developed; consequently, such failure modes as SCC and fatigue are not evaluated in design. For this paper, strain rates induced by dynamic loading during such operations as plant start-up were calculated at typical points, such as reactor internals, piping and so on. The finite element method was applied to calculate the strain history of each point, and the strain rate was evaluated. The strain rate evaluation results clearly demonstrated that thermal transients provide greater peak strain rate values than pressure transients. Strain rates on the order of 10−7 s−1 were obtained for most points of major components during such thermal transients as plant start-ups. The major factors determining the strain rate magnitude were discussed, based on the calculation results. It was shown that the rate of temperature rise was the most important parameter, because it exhibited much larger sensitivity than the other parameters on the strain rate and could be controlled by plant operation procedures. In addition, a simple strain rate evaluation method based on Green’s function was developed for a specific point with a given design condition.


1974 ◽  
Vol 13 (67) ◽  
pp. 27-35 ◽  
Author(s):  
G. Holdsworth

Examination of the past and present behaviour of the Erebus Glacier tongue over the last 60 years indicates that a major calving from the tongue appears to be imminent. Calculations of the regime of the tongue indicate that bottom melt rates may exceed 1 m a−1. By successive mapping of the ice tongue between the years 1947 and 1970, longitudinal strain-rates were determined using the change in distance between a set of 15 teeth, which are a prominent marginal feature of the tongue. Assuming a flow law for ice of the form where τ is the effective shear stress and is the effective shear strain-rate, values of the exponent n = 3 and B = 1 × 108 N m−2 are determined. These are in fair agreement with published values.


A yield criterion and plastic stress-strain relations are formulated for anisotropic metals deformed under conditions of plane strain. The equations are shown to be hyperbolic, the characteristics coinciding with the directions of maximum shear strain-rate. When the anisotropy is uniformly distributed, the variation of the stresses along the characteristics is expressed in terms of elliptic functions, and geometrical properties of the field of characteristics are established. The theory is applied to the problem of indentation by a flat die.


1982 ◽  
Vol 3 ◽  
pp. 346 ◽  
Author(s):  
N.W. Young ◽  
D. SheehY ◽  
T. Hamley

Trilateration and single line surveys have been made to about 900 km inland of Casey, Wilkes Land, to measure surface elevation, ice thickness, horizontal velocity, and other parameters. On the large scale the velocity U increases smoothly from 8 m a−1, 800 km inland, to 280 m a−1 inland of the fast outlet streams. This increase in velocity is associated with a corresponding increase in the large-scale smoothed (over about 30 ice thicknesses) basal shear stress τb from 0.4 to 1.5 bar. The mean shear strain-rate through the ice sheet U/Z = kτb4 , where Z is the ice thickness (range 4 500 to 1 700 m). At scales of one to several ice thicknesses large variations occur in surface slope and ice thickness without proportionally large velocity variations, because of the effect of the longitudinal stress. Detailed measurements made over a 30 km section indicated that the surface longitudinal strain-rate gradient varied from -1.7 to +1.3×l0−6 a−1 m−1 along with variations in surface slope of from -3.5 to +1.5%. A multilayer model, based on the solution of the biharmonic equation for the stream function, was used in a study of the ice flow associated with these surface undulations. Given the bedrock topography and large-scale flow parameters, the model closely predicted the measured surface profile when the variation of the surface accumulation rate over an undulation was also considered.


2018 ◽  
Vol 276 ◽  
pp. 140-147
Author(s):  
Martina Drdlová ◽  
Miloslav Popovič ◽  
René Čechmánek

This paper presents an experimental study on the high strain rate compressive behavior of micro-fibre reinforced ultrahigh performance cementitious composite, which is intended to be used as a matrix for slurry infiltrated fibre concrete (SIFCON). Cementitious composite specimens with 5 different types of microfibres, namely aramid, carbon, wollastonite, polypropylene and glass in amounts of 1.5-2.0% by volume were prepared and investigated. Split Hopkinson pressure bar (SHPB) equipment was used to determine the cementitious composite behavior at strain rates up to 1600 s-1. Quasistatic tests were performed, as well and ratios of these properties at high strain rates to their counterparts at static loading were compared. The dynamic increase factors were calculated. Strain rate sensitivity was observed - compressive strength was found to be increased with strain rate for all tested specimens. Peak stress values, critical compressive strain and post peak behaviour varies for specimens with different micro-fibre reinforcement, which allows to find the optimal reinforcement for high strain rate impacted structures.


1978 ◽  
Vol 20 (82) ◽  
pp. 41-66 ◽  
Author(s):  
M.J. Hambrey ◽  
F. Müller

AbstractThe major structures in the long, narrow tongue of a sub-polar valley glacier are described: namely, longitudinal foliation, crevasses, clear-ice layers related to crevasses, debris-rich layers (frequently referred to as thrust or shear planes in the past), and folds. The foliation is vertical, is as well-developed in the centre of the glacier as at the margins, and does not, apparently, form perpendicular to the principal compressive strain-rate axis, nor exactly parallel to a line of maximum shearing strain-rate, although it sometimes approximately coincides with the latter. The intensity of foliation development is not related to the magnitude of the strain-rates, but the structure consistently lies parallel to flow lines through the glacier. There is no critical extending strain-rate, as such, associated with the development of new crevasses. Some crevasses have formed where the principal extending strain-rate is as low as 0.004 a-1while, in other areas, extending strain-rates of 0.163 a-1have not always resulted in fracturing. Prominent clear-ice layers, referred to as crevasse traces as displayed at the glacier surface, have formed in crevasse belts parallel to the main fracture directions. These are interpreted either as tensional veins or as the result of the freezing of water in crevasses. Extension parallel to the layering occurs during flow and, near the snout, the surface dip decreases rapidly. The fact that the crevasse traces can be followed to the snout implies that fracture occurs almost to the bottom of the glacier in the source area of the traces. Near the snout, debris-rich layers have developed parallel to the crevasse traces; frequently these are marked by prominent ridge-like ice-cored moraines. It is suggested that these structures are formed by a combination of basal freezing and thrusting. Isoclinal and tight similar folds on all scales are present. Some may be formed by the passive deformation of clear-ice layers as a result of differential flow; others may arise from the lateral compression of the original stratification in areas where ice flow becomes constricted by the narrowing of the valley. An axial plane foliation sometimes is associated with these folds.


1985 ◽  
Vol 64 ◽  
Author(s):  
P. H. Bischoff ◽  
S. H. Perry

ABSTRACTSince good constitutive laws are required to model correctly the behaviour of concrete under impact loading, it is necessary to determine the complete stress-strain response of concrete at varying strain rates. Conflicting evidence emerges about whether the critical compressive strain (defined as the strain observed at maximum stress) increases or decreases with an increasing strain rate. In this paper, a comprehensive description is given of the brittle fracture process for plain concrete under static and impact loading. The strain rate dependance of tensile microcrack growth is used to explain both the increase in strength and the increase in critical compressive strain that can occur at high strain rates. More extensive experimental results are required to determine the fundamental changes in behaviour that occur as the loading rate is increased and, thus, facilitate the development of a more precise failure model for concrete.


1996 ◽  
Vol 460 ◽  
Author(s):  
Yinmin Wang ◽  
Dongliang Lin ◽  
Yun Zhang

ABSTRACTFrom our previous work, Ni3Al polycrystals with combined addition of magnesium and silicon kept high values of compressive strain at rupture (CSR) when the strain rate rose. In order to further improve hot workability of Ni3Al, 7.9wt.% Cr was added. The compressive tests showed that 30%∼40% CSR values of the alloy had been kept in a wide temperature range of 1173K-1373K at strain rates of 10-2sec-1 and 10-2sec-1 in contrast with 15%∼25% CSR values of the alloy without Cr addition.In practical hot rolling process, at initial deformation temperature of 1373K, strain rate of 1.0 sec-1 and by controlling reduction within 10∼15% each rolling pass, Ni3Al ingots were successfully hot-rolled into polycrystals with different deformations, the maximum of which was 55%. The deformed alloys had manifestly enhanced mechanical properties shown by tensile tests.The dislocation configurations of deformed alloys have been investigated by using transmission electron microscope(TEM).


Author(s):  
Karl F. Schoch ◽  
Philip Panackal ◽  
M. Garrett Bimstefer ◽  
Amanda Brocki ◽  
Daniel Urban

Abstract Thermal interface materials (TIMs) are an essential part of managing thermal performance of electronic assemblies. Knowledge of the mechanical properties of these materials is required in order to have a robust design that will perform as required over the life of the product, including many thermal cycles, without causing damage to electrical components. In this paper, we report on mechanical properties of three putty TIMs and four pad TIMs, showing that the stiffness of the TIMs is proportional to the square of the initial shape factor over the range of shape factors from 1 to 18. Since the putties can flow more readily under pressure than the pads, the putties had a lower measured stiffness at a given shape factor compared to the pads. From these relationships, designers can predict loads with various geometries (i.e. shape factors) and loading rates (i.e. shock loading vs. temperature cycling) which can impact their design. While all of the materials were tested at compressive strain rates of 20 to 70% strain/minute, one putty was also tested at a 10x higher rate to determine the effect of a relatively high strain rate on the peak stress. In that case, the peak stress was approximately 3x higher than measured at the lower strain rates. However, the relaxed load at each strain rate tested was unaffected by strain rate, indicating that hardware assembly conditions can be adjusted to minimize stress on components and yet, still achieve an interface having low thermal resistance.


Sign in / Sign up

Export Citation Format

Share Document