Practical Design of Ni3Al with High Hot Workability

1996 ◽  
Vol 460 ◽  
Author(s):  
Yinmin Wang ◽  
Dongliang Lin ◽  
Yun Zhang

ABSTRACTFrom our previous work, Ni3Al polycrystals with combined addition of magnesium and silicon kept high values of compressive strain at rupture (CSR) when the strain rate rose. In order to further improve hot workability of Ni3Al, 7.9wt.% Cr was added. The compressive tests showed that 30%∼40% CSR values of the alloy had been kept in a wide temperature range of 1173K-1373K at strain rates of 10-2sec-1 and 10-2sec-1 in contrast with 15%∼25% CSR values of the alloy without Cr addition.In practical hot rolling process, at initial deformation temperature of 1373K, strain rate of 1.0 sec-1 and by controlling reduction within 10∼15% each rolling pass, Ni3Al ingots were successfully hot-rolled into polycrystals with different deformations, the maximum of which was 55%. The deformed alloys had manifestly enhanced mechanical properties shown by tensile tests.The dislocation configurations of deformed alloys have been investigated by using transmission electron microscope(TEM).

2015 ◽  
Vol 60 (2) ◽  
pp. 605-614 ◽  
Author(s):  
T. Kvačkaj ◽  
A. Kováčová ◽  
J. Bidulská ◽  
R. Bidulský ◽  
R. Kočičko

AbstractIn this study, static, dynamic and tribological properties of ultrafine-grained (UFG) oxygen-free high thermal conductivity (OFHC) copper were investigated in detail. In order to evaluate the mechanical behaviour at different strain rates, OFHC copper was tested using two devices resulting in static and dynamic regimes. Moreover, the copper was subjected to two different processing methods, which made possible to study the influence of structure. The study of strain rate and microstructure was focused on progress in the mechanical properties after tensile tests. It was found that the strain rate is an important parameter affecting mechanical properties of copper. The ultimate tensile strength increased with the strain rate increasing and this effect was more visible at high strain rates$({\dot \varepsilon} \sim 10^2 \;{\rm{s}}^{ - 1} )$. However, the reduction of area had a different progress depending on microstructural features of materials (coarse-grained vs. ultrafine-grained structure) and introduced strain rate conditions during plastic deformation (static vs. dynamic regime). The wear behaviour of copper was investigated through pin-on-disk tests. The wear tracks examination showed that the delamination and the mild oxidational wears are the main wear mechanisms.


1993 ◽  
Vol 305 ◽  
Author(s):  
J. C. Arnold ◽  
A. R. Eccott

AbstractThe effects of physical ageing and prior immersion time on the ESC behaviour of polycarbonate in ethanol were studied. Constant strain rate tensile tests were performed at a range of strain rates for samples with ageing times varying from 100 hours to 3000 hours and for prior immersion times of between 1 hour and 500 hours. Comparison of tests performed in ethanol and in air gave a good indication of the point of craze initiation. The results showed that there was a reduction in strain to crazing as the strain rate decreased, apart from with the lowest strain rate used. A longer prior immersion time also promoted craze formation. Both of these results are attributable to diffusion effects. Physical ageing had little effect on the ESC behaviour, due to the large amounts of deformation encountered in this system.


DYNA ◽  
2016 ◽  
Vol 83 (195) ◽  
pp. 77-83 ◽  
Author(s):  
María José Quintana Hernández ◽  
José Ovidio García ◽  
Roberto González Ojeda ◽  
José Ignacio Verdeja

The use of Cu and Ti in Zn alloys improves mechanical properties as solid solution and dispersoid particles (grain refiners) may harden the material and reduce creep deformation. This is one of the main design problems for parts made with Zn alloys, even at room temperature. In this work the mechanical behavior of a Zn-Cu-Ti low alloy is presented using tensile tests at different strain rates, as well as creep tests at different loads to obtain the value of the strain rate coefficient m in samples parallel and perpendicular to the rolling direction of the Zn strip. The microstructure of the alloy in its raw state, as well as heat treated at 250°C, is also analyzed, as the banded structure produced by rolling influences the strengthening mechanisms that can be achieved through the treatment parameters.


2006 ◽  
Vol 129 (1) ◽  
pp. 29-35 ◽  
Author(s):  
Fahmi Zaïri ◽  
Moussa Naït-Abdelaziz ◽  
Krzysztof Woznica ◽  
Jean-Michel Gloaguen

In this study, a modelization of the viscoplastic behavior of amorphous polymers is proposed, from an approach originally developed for metal behavior at high temperature, in which state variable constitutive equations have been modified. A procedure for the identification of model parameters is developed through the use of experimental data from both uniaxial compressive tests extracted from the literature and uniaxial tensile tests performed in this study across a variety of strain rates. The numerical algorithm shows that the predictions of this model well describe qualitatively and quantitatively the intrinsic softening immediately after yielding and the subsequent progressive orientational hardening corresponding to the response of two polymers, amorphous polyethylene terephthalate and rubber toughened polymethyl methacrylate.


2005 ◽  
Vol 297-300 ◽  
pp. 905-911 ◽  
Author(s):  
Xu Chen ◽  
Li Zhang ◽  
Masao Sakane ◽  
Haruo Nose

A series of tensile tests at constant strain rate were conducted on tin-lead based solders with different Sn content under wide ranges of temperatures and strain rates. It was shown that the stress-strain relationships had strong temperature- and strain rate- dependence. The parameters of Anand model for four solders were determined. The four solders were 60Sn-40Pb, 40Sn-60Pb, 10Sn-90Pb and 5Sn-95Pb. Anand constitutive model was employed to simulate the stress-strain behaviors of the solders for the temperature range from 313K to 398K and the strain rate range from 0.001%sP -1 P to 2%sP -1 P. The results showed that Anand model can adequately predict the rate- and temperature- related constitutive behaviors at all test temperatures and strain rates.


1980 ◽  
Vol 25 (92) ◽  
pp. 215-228 ◽  
Author(s):  
M. J. Hambrey ◽  
A. G. Milnes ◽  
H. Siegenthaler

AbstractA detailed investigation has been carried out on the dynamics of an Alpine valley glacier of relatively simple shape and the results are considered in relation to the development of secondary structures. Ice velocity reaches a maximum near the top of a small ice fall (40 m a−1) which also coincides approximately with the equilibrium line. Flow lines converge in the accumulation area but are roughly parallel in the ablation area. The “regional” strain-rate pattern is rather complex. Approximate longitudinal extension is evident in the accumulation area and strain-rates reach high values at the south margin and in the ice fall (up to 0.12 a−1). In the ablation area, strain-rates are comparatively small and in general indicate longitudinal compression. “Local” deformation rates obtained in the area beneath the ice fall and along a flow line near one of the margins reveal complex patterns of deformation within small areas.There is no clear relationship between foliation and strain-rates (and by analogy stresses), except in the case of longitudinal foliation in marginal areas which, if actively developing, lies approximately parallel to a direction of maximum shear strain-rate. It is more important to consider the relationship of this structure to strain history. Results from this study indicate that, regardless of the initial orientation of the foliation in relation to the strain ellipse, it attains approximate parallelism with the long axis of the ellipse as deformation progresses.It is also shown that many foliations originate from pre-existing layered structures such as stratification or crevasse traces. This problem is discussed particularly with reference to an arcuate foliation which originates in the ice fall and is believed to represent tensional veins, subsequently subjected to compressive strain within and below the ice fall.


1991 ◽  
Vol 113 (4) ◽  
pp. 475-484 ◽  
Author(s):  
K. P. Jen ◽  
J. N. Majerus

This paper presents the evaluation of the stress-strain behavior, as a function of strain-rate, for three tin-lead solders at room temperature. This behavior is critically needed for reliability analysis of printed circuit boards (PCB) since handbooks list minimal mechanical properties for the eutectic solder used in PCBs. Furthermore, most handbook data are for stable eutectic microstructure whereas PCB solder has a metastable microstructure. All three materials were purchased as “eutectics.” However, chemical analysis, volume fraction determination, and microhardness tests show some major variations between the three materials. Two of the materials have a eutectic composition, and one does not. The true stress-strain equations of one eutectic and the one noneutectic material are determined from compressive tests at engineering strain-rates between 0.0002/s and 0.2/s. The second eutectic material is evaluated using tensile tests with strain-rates between 0.00017/s and 0.042/s. The materials appear to exhibit linear elastic behavior only at extremely small strains, i.e., less than 0.0005. However, this “elastic” behavior showed considerable variation, and depended upon the strain rate. In both tension and compression the eutectic alloy exhibits nonlinear plastic behavior, i.e., strain-softening followed by strain-hardening, which depends upon the strain rate. A quadratic equation σy = σy(ε˚/ε˚0) + A(ε˚/ε˚0)ε + B(ε˚/ε˚0)ε2 fit to the data gives correlation coefficients R2 > 0.91. The coefficients σy(ε˚/ε˚0), A(ε˚/ε˚0), B(ε˚/ε˚0) are fitted functions of the normalized engineering strain rate ε˚/ε˚0. Replicated experiments are used at each strain-rate so that a measure of the statistical variation could be estimated. Measures of error associated with the regression analysis are also obtained so that an estimate of the total error in the stress-strain relations can be made.


2020 ◽  
pp. 089270572094422
Author(s):  
Mohammadali Shirinbayan ◽  
Joseph Fitoussi ◽  
Farid Kheradmand ◽  
Arash Montazeri ◽  
Peiyuan Zuo ◽  
...  

Influence of loading temperature on the damage mechanism of polyphenylene sulfide (PPS) reinforced by glass fiber (PPS/GF30) under tension was experimentally studied from quasi-static (QS) to high strain rates. Two kinds of PPS/GF30 samples were prepared: PPS-0° and PPS-90° (correspond to fibers oriented parallel and perpendicular to the injection direction, respectively). After microscopic observation and thermomechanical characterizations by dynamic mechanical analysis, tensile tests up to failure with strain rates varying from 10−3 s−1 to 100 s−1 have been carried out at 25°C and 120°C with regard to PPS/GF30 glass transition temperature. To achieve the coupling effect of high strain rate and high temperature, a special chamber was designed to install on the servo-hydraulic machine. The results of QS tensile tests confirm the significant effect of fiber orientation and temperature on the Young’s modulus, the ultimate stress, and strain. High strain tensile test results showed that the PPS/GF30 composite is strain rate dependent at both temperatures. The results indicated that Young’s modulus remains constant by strain rate increasing at both temperatures while ultimate stress and strain are increased. No significant damage has been observed at 25°C in QS loading, whereas the macroscopic damage variable is increased to 20% at 120°C. Debonding at the fiber–matrix interface is the main damage mechanism at 120°C.


2018 ◽  
Vol 276 ◽  
pp. 140-147
Author(s):  
Martina Drdlová ◽  
Miloslav Popovič ◽  
René Čechmánek

This paper presents an experimental study on the high strain rate compressive behavior of micro-fibre reinforced ultrahigh performance cementitious composite, which is intended to be used as a matrix for slurry infiltrated fibre concrete (SIFCON). Cementitious composite specimens with 5 different types of microfibres, namely aramid, carbon, wollastonite, polypropylene and glass in amounts of 1.5-2.0% by volume were prepared and investigated. Split Hopkinson pressure bar (SHPB) equipment was used to determine the cementitious composite behavior at strain rates up to 1600 s-1. Quasistatic tests were performed, as well and ratios of these properties at high strain rates to their counterparts at static loading were compared. The dynamic increase factors were calculated. Strain rate sensitivity was observed - compressive strength was found to be increased with strain rate for all tested specimens. Peak stress values, critical compressive strain and post peak behaviour varies for specimens with different micro-fibre reinforcement, which allows to find the optimal reinforcement for high strain rate impacted structures.


1978 ◽  
Vol 20 (82) ◽  
pp. 41-66 ◽  
Author(s):  
M.J. Hambrey ◽  
F. Müller

AbstractThe major structures in the long, narrow tongue of a sub-polar valley glacier are described: namely, longitudinal foliation, crevasses, clear-ice layers related to crevasses, debris-rich layers (frequently referred to as thrust or shear planes in the past), and folds. The foliation is vertical, is as well-developed in the centre of the glacier as at the margins, and does not, apparently, form perpendicular to the principal compressive strain-rate axis, nor exactly parallel to a line of maximum shearing strain-rate, although it sometimes approximately coincides with the latter. The intensity of foliation development is not related to the magnitude of the strain-rates, but the structure consistently lies parallel to flow lines through the glacier. There is no critical extending strain-rate, as such, associated with the development of new crevasses. Some crevasses have formed where the principal extending strain-rate is as low as 0.004 a-1while, in other areas, extending strain-rates of 0.163 a-1have not always resulted in fracturing. Prominent clear-ice layers, referred to as crevasse traces as displayed at the glacier surface, have formed in crevasse belts parallel to the main fracture directions. These are interpreted either as tensional veins or as the result of the freezing of water in crevasses. Extension parallel to the layering occurs during flow and, near the snout, the surface dip decreases rapidly. The fact that the crevasse traces can be followed to the snout implies that fracture occurs almost to the bottom of the glacier in the source area of the traces. Near the snout, debris-rich layers have developed parallel to the crevasse traces; frequently these are marked by prominent ridge-like ice-cored moraines. It is suggested that these structures are formed by a combination of basal freezing and thrusting. Isoclinal and tight similar folds on all scales are present. Some may be formed by the passive deformation of clear-ice layers as a result of differential flow; others may arise from the lateral compression of the original stratification in areas where ice flow becomes constricted by the narrowing of the valley. An axial plane foliation sometimes is associated with these folds.


Sign in / Sign up

Export Citation Format

Share Document