scholarly journals Further Observations on the Occurrence of Iodine in Relation to Endemic Goitre in New Zealand and on Iodine Metabolism

1931 ◽  
Vol 31 (4) ◽  
pp. 493-522 ◽  
Author(s):  
C. E. Hercus ◽  
H. A. A. Aitken ◽  
H. M. S. Thomson ◽  
G. H. Cox

1. Most artificial manures are found to have some effect in increasing the iodine content of crops, particularly superphosphate.2. Marked differences are found between the iodine contents of Samoan and New Zealand foodstuffs corresponding to the non-goitrous condition of Samoa and the partial endemicity of New Zealand.3. Investigation of the dietaries of fifteen residential institutions showed that improvement in provision of iodine was necessary in many cases by using fish at least twice a week, raising the daily ration of milk to 1 pint per head, and employing iodised salt for table and culinary purposes.4. Dietetic experiments indicate (i) that on a change of diet adjustment of iodine metabolism may take a considerable time, (ii) that iodised salt is most effective in promoting storage of iodine when associated with a meat diet.5. Iodine excretion is found to decrease much more rapidly under fasting than on a diet very low in iodine.6. Iodised salt has the effect of adjusting the excretion of goitrous adults to the normal non-goitrous value.7. The iodine content of the blood is found to be lower than normal in cases of simple colloid and simple nodular goitre, though it may range from low to abnormally high in cases of Graves' disease. In all types of goitre the thyroid gland is low in iodine.8. The ratio of thyroid iodine to total bodily iodine is about 12 per cent. in the case of the white rat under ordinary conditions, but the ratio is found to vary considerably with the iodine intake.9. Great differences in the ratio of the weight of the thyroid gland to that of the whole body are found among different species of animals, the ratio being higher for the dog than for the monkey.10. Variations in commercial samples of iodised salts are recorded and discussed.11. Data are given in regard to the iodine and chlorine content of rainwater in different localities.

1936 ◽  
Vol 36 (2) ◽  
pp. 182-203 ◽  
Author(s):  
C. E. Hercus ◽  
H. D. Purves

VI. Summary1. Some improvements in the determination of small quantities of iodine in biological substances are described.2. The thesis that a low iodine intake is prerequisite for goitre production is supported.3. A survey of determinations by various authors of the daily urinary iodine excretion in goitrous and non-goitrous regions leads to the conclusion that the critical level of iodine intake sufficient to suppress goitre is between 120 and 160γ per day.4. Determinations of urinary iodine excretion in New Zealand and in the non-goitrous islands of Samoa are presented which show that in the parts of New Zealand investigated the iodine intake is at a low or goitrous level.5. The result in New Plymouth, Taranaki, shows that a high content of iodine in the soil does not necessarily assure an adequate iodine intake.6. The progress of prophylaxis by iodised salt in New Zealand is reviewed, and from consumption data it is concluded that iodised salt constitutes approximately only 30 per cent, of the domestic salt consumption of New Zealand.7. To ensure a more general use of iodised salt it is recommended that the regulations be amended to provide that:(a) Ordinary domestic salt shall be iodised.(b) Non-iodised salt shall be sold only in packages labelled “Non-iodised” and with the addition “ The use of this salt exposes the user to the risk of developing goitre”.8. The results obtained hitherto with the use of iodised salt are briefly reviewed and attention drawn to some apparent failures even when iodised salt has been used for all domestic purposes. These failures are attributed to the standard for iodised salt being too low.9. It is concluded that for New Zealand a supplementation of at least 100γ per day is necessary to afford complete protection against goitre.10. To provide the necessary amount of supplementation the iodine content of iodised salt in New Zealand requires to be raised. We recommend therefore that either(a) If the domestic salt only is to be iodised the standard be fixed at from 5 to 6 parts of potassium iodide (KI) per 250,000 of salt, or(b) If iodised salt is to be used in the manufacture of bread, butter, bacon and other salted foods, the standard be fixed at from 3 to 4 parts of potassium iodide (KI) per 250,000 of salt.11. In New Zealand cabbage has not shown any marked goitrogenic activity as tested on rabbits.12. Turnip roots showed sporadically a goitrogenic activity comparable with that found for the most active samples of cabbage in other countries.13. In tests of Brassica seeds on rats, goitrogenic activity was found in rape seed, cabbage seed, steamed white mustard seed, and steamed black mustard seed.14. The activity of rape seed was destroyed by steaming.We have pleasure in acknowledging the financial help which we have received from the Sir John Roberts Endowment for Medical Research, from the Sir H. L. Ferguson Fund and from the Honorary Staff of the Dunedin Hospital, and for the co-operation of a large number of our colleagues in New Zealand and Samoa in the collection of specimens.


1964 ◽  
Vol 46 (4) ◽  
pp. 679-683 ◽  
Author(s):  
W. D. Alexander ◽  
Th. Veiger Gudmundsson ◽  
M. M. Bluhm ◽  
R. McG. Harden

ABSTRACT The relation between plasma inorganic iodine level, thyroid clearance and absolute iodine uptake of the thyroid gland has been studied in Iceland and compared with results obtained in Glasgow using identical methods. In Iceland the plasma inorganic iodine (PII) is higher than in Glasgow due to the high iodine content of the diet and the thyroid clearance lower. This adjustment is, however, incomplete, relatively high PII levels being associated with a low thyroid clearance and a raised absolute uptake by the thyroid. There was no evidence of increased hormone production as reflected in the serum PBI.


1928 ◽  
Vol 21 (7) ◽  
pp. 1217-1230 ◽  
Author(s):  
D. W. Carmalt Jones

Simple goitre is highly prevalent in New Zealand, and there is considerable incidence of toxic goitre. The ætiology of simple goitre seems fairly well established, and an attempt is being made to apply the data from simple goitre to the problems of toxic goitre. Endemic goitre is of great antiquity among the Maoris, and has been described among Europeans for about fifty years. It occurs in both men and animals. At five years its incidence is similar in boys and girls, later it decreases in boys but increases greatly in girls. It is often hereditary, and many children are born goitrous. In children it is generally small, but may enlarge and cause pressure, myxœdema and toxicity. Its incidence varies greatly in different districts. The only cause found consistent with this variation in distribution is lack of iodine in the soil. An inverse ratio has been demonstrated between the iodine content of the soil and the incidence of goitre in school children in thirty-three districts. The iodine content of the soil is reflected in the food raised upon it. The daily iodine intake was estimated at 35 microgrammes in a non-goitrous, and at 20 microgrammes in a goitrous district. The amount of iodine involved is infinitesimal, and its intake can be ensured by the use of salt for ordinary consumption, which contains four parts per million of potassium iodide. Toxic goitre is also frequent: in this connexion, the influence of iodine on the thyroid has been investigated. If starved of iodine the thyroid adapts itself either by increasing its colloid or by a diffuse hyperplasia, both may occur in different parts of the same gland. Simple goitre is the response of the healthy thyroid to iodine deficiency, the responding areas may be diffuse or adenomatous, and degenerations may occur. Such goitres may be treated with iodine, in children re-adjustment to the increased intake is readily made, but in adults long accustomed to a low intake, excess often causes too great hormone production, with toxic symptoms, hence the minimal dose alone is permissible in iodized salt. Goitre stored with iodine at low pressures may become toxic under stress, and this may be precipitated by iodine. The prevalence of toxic goitre may be partly due to the prescription of iodides in therapeutic doses for common ailments. Diffuse colloid goitre may subside under physiological iodine, the adenomatous is more prone to toxic symptoms and may go on to secondary Graves' disease or to myxœdema. Diffuse hyperplasia is a possible manifestation of iodine deficiency as primary Graves' disease. Lugol's solution probably allows of a temporary storage in this condition. Iodine has certainly some bearing on the problems of toxic goitre.


1988 ◽  
Vol 117 (3) ◽  
pp. 333-338 ◽  
Author(s):  
Gerhard Hintze ◽  
Dieter Emrich ◽  
Klaus Richter ◽  
Hanne Thal ◽  
Horst Thal ◽  
...  

Abstract. The availability of iodinated salt containing 20 mg of iodine as iodate/kg salt consumed on a voluntary basis enabled us to investigate its effect on goitre prevalence and iodine excretion in urine in a longitudinal, prospective, randomized study over 4 years. With this salt, under the assumption of a consumption of 5 g salt per day and person, an additional intake of 100 μg of iodine can be achieved. The study was performed on initially 334 children (168 boys, 166 girls) at the age of 10 years living in an area of iodine deficiency. After 4 years, 286 children still participated in the study. Initially, goitre prevalence as assessed by palpation was found to be 30.5% (37.4% in girls and 23.8% in boys). Neck circumference was found to be significantly higher in children with goitre compared with those without (30.2 ± 1.4 vs 29.4 ± 1.4 cm; P < 0.001). Iodine excretion in the urine was significantly lower in children with goitre compared with those without (40.4 ± 16.7 μg/g creatinine vs 46.1 ± 24.9 μg/g creatinine; x ± sd; P < 0.05). The children were randomly assigned to two different groups: group A (N = 146) was asked to use iodinated salt, group B (N = 188) non-iodinated salt. Over the 4 years, a continuous increase in iodine excretion in urine could be demonstrated in group A. After 1 year, it was significantly higher than in the control group that used non-iodinated salt. After 4 years, the mean iodine excretion in children using iodinated salt was 60.1 ± 24.1 μg/g creatinine in contrast to 45.1 ± 18.6 μg/g in the control group (x ± sd; P< 0.0001). However, no decrease in goitre prevalence could be documented: after 4 years, 23.8% of the children belonging to the group using iodinated salt and 22.5% of those in the group taking non-iodinated salt had a goitre. From these observations we conclude: 1. The voluntary use of a commercially available iodinated salt containing 20 mg iodate/kg leads to a significant increase in iodine intake, measured by urinary iodine excretion. Even after 4 years, the value is far below the daily iodine intake recommended by the WHO. No decrease in goitre frequency could be assessed. 2. An increase in iodine ingestion can be achieved either by increasing the iodine content of the salt or by application of iodine by alternative measures. The safest way would be to use iodinated salt exclusively, i.e. also in the food industry and restaurants. An increase in the iodine content of the salt and its continuous voluntary use would lead to a large variation in iodine intake. A higher risk of adverse reaction, e.g. iodine-induced thyrotoxicosis, cannot be excluded in susceptible persons.


Proceedings ◽  
2019 ◽  
Vol 37 (1) ◽  
pp. 15
Author(s):  
Finlayson ◽  
Hurst ◽  
Brough

Iodine concentrations are low in the New Zealand food supply and in 2009 the mandatoryfortification of all commercial bread (except organic) with iodised salt was implemented. [...]


Author(s):  
Dinesh P. Sharma ◽  
Amitkumar Maheshwari ◽  
Chandan Chakrabarti ◽  
Darshan J. Patel

Abstract Aim Iodine deficiency disorder (IDD) is the cause of preventable brain damage, mental retardation, and stunted growth and development in children. This study aimed to detect the prevalence of IDD in Kachchh district, Gujarat, by testing urinary iodine excretion levels and iodine intake of salts in school-going children. Methods A cross-sectional study was conducted and the level of iodine deficiency was assessed in 223 school children of both sexes, aged 6 to 12 years from four talukas, that is, subdivisions, of the Kachchh district by estimating urinary iodine using Sandell–Kolthoff reaction along with iodine content in edible salt samples by MBI kit (STK-Spot testing kit, MBI Kits International, Chennai, TN, India). Results The median urinary iodine level was found to be 194 μg/L, indicating no biochemical iodine deficiency in the region. In the study areas, 1% of the population showed a level of urinary iodine excretion < 50 μg/L. About 83% salt samples had iodine level more than 15 ppm and the iodine content in salt samples less than 15 ppm was only about 17%, indicating the salt samples at households contain iodine in adequate level. Conclusion There is a need of periodic surveys to assess the change in magnitude of IDD with respect to impact of iodized salt intervention.Furthermore, to strengthen National Iodine Deficiency Disorders Control Program, factors should be identified. There is also a need to prevent and reimpose the ban on the sale of noniodized salts in Gujarat.


2002 ◽  
pp. 663-670 ◽  
Author(s):  
S Andersen ◽  
SB Petersen ◽  
P Laurberg

OBJECTIVE: The iodine intake level is important for the occurrence of thyroid disorders in a population. We have previously found that iodine in drinking water is related to iodine excretion but whether iodine is present as iodide or bound in other molecules remains unknown. DESIGN: We measured iodine in drinking water from 22 locations in Denmark. Six locations were selected by iodine content for further tap water analysis (Skagen 140 micro g/l, Samsoe 56 micro g/l, Nykoebing S. 50 micro g/l, Nakskov 40 micro g/l, Ringsted 38 micro g/l, Copenhagen 19 micro g/l). METHODS: HPLC size exclusion before (Skagen) and after (all sites) freeze drying and measurement of absorbance (280 nm) and iodine in fractions, and fluorescence spectroscopy of bulk organic matter in Skagen drinking water. RESULTS: Iodine content was unaltered after 3 Years (P=0.2). All samples contained organic molecules with characteristics similar to humic substances. Most iodine eluted with humic substances (Skagen 99%, Ringsted 98%, Nykoebing S. 90%, Copenhagen 90%, Samsoe 75%, Nakskov 40%). Changing pH and ionic strength and preincubation with iodide indicated that iodine was bound in humic substances. Humic substances may affect thyroid function but differ with geology. Geological and geochemical data agree with tap water humic substances having been released from marine deposits. Iodine is abundant in the marine environment and marine deposits are particularly rich in iodine. Correlation analysis (r=0.85, P=0.03) conform to iodine in drinking water, suggesting marine humic substances at the source rock. CONCLUSION: Iodine in Danish drinking water varied considerably. In drinking water with a high iodine content, the iodine mainly eluted with humic substances derived from marine source rock. We hypothesize that iodine in drinking water in general suggests coexisting humic substances of marine origin.


2018 ◽  
Author(s):  
Janny M Goris ◽  
Victor J Temple ◽  
Nienke Zomerdijk ◽  
Karen Codling

ABSTRACTIodine deficiency is the single most common cause of preventable mental impairment in communities with suboptimal iodine intake. Objective of the present study was to assess in more detail the iodine status and knowledge, attitudes and practice (KAP) relating to use of iodised salt in a remote community in Kotidanga area, Kerema district, Gulf province, Papua New Guinea. This prospective school and community based cross-sectional study was carried out in 2017. Simple random sampling was used to select schools. Multistage sampling was used to randomly select 291 children aged 6 to 12 years. Salt samples were collected for analysis from children’s households as well as a single urine sample of selected children. Salt iodine content and Urinary iodine concentration (UIC) were analysed. A semi-structured FAO questionnaire was used to assess KAP of three different community groups. Only 64% of households had salt on the day of data collection. Mean iodine content in household salt samples was 29.0 ± 19.1 ppm. Iodine content was below 30.0 ppm in 54.8% and below 15.0 ppm in 31.2% of salt samples. Mean per capita discretionary intake of household salt was 2.9 ± 1.8 g/day. Median UIC was 25.5 μg/L and Interquartile Range was 15.0 to 47.5 μg/L; 75.9% (221/291) of the children had UIC below 50.0 μg/L, indicating moderate status iodine nutrition. Median UIC was 34.3μg/L for children in households with salt, compared to 15.5 μg/L for children in households without salt, indicating severe iodine deficiency in the latter group. The three community groups had limited knowledge about importance of using iodised salt and consequences of iodine deficiency on health outcomes. This remote community has limited access to adequately iodised household salt due to high cost, inappropriate packaging, storage and food preparation, resulting in iodine deficiency. Strategies to increase iodine intake are needed.


2004 ◽  
Vol 43 (01) ◽  
pp. 21-25 ◽  
Author(s):  
F.-J. Bormuth ◽  
S. Braun ◽  
M. Zimny ◽  
H.-J. Schroth ◽  
Th. Rink

Summary Aim of this study is the introduction and validation of a simple model of the intrathyroidal iodine kinetics, designed for optimizing radioiodine therapy planning and dose measurement in a routine clinical setting. Methods: The new model defines the intrathyroidal iodine kinetics as balance of the thyroidal iodine intake and -excretion, characterized by the two exponential equations At = A0 * (1-exp(-λ1t)) and At = A0 * (exp(-λ2t) -1), respectively. A0 describes the theoretically maximum iodine uptake when the thyroidal iodine excretion is ignored, λ1 and λ2 represent the constants characterizing the iodine intake and excretion, respectively. The thyroidal iodine content at the time t equals the sum of both functions, which is At = A0 * (exp(-λ2t)-exp(-λ1t)). In 25 patients with autonomous goiter / nodules (n = 18), Graves’ disease (n = 5), or endemic euthyroid goiter (n = 2), the iodine uptake in the thyroid during the radioiodine therapy as fraction of the applied activity was determined daily, with the remaining body covered by a lead shield. On average, 7.2 measurements were performed per patient (minimum 4, maximum 13). With these uptake values, individual regression curves were fitted using the above equation, and the difference between the actual measurements and the corresponding values of the regression curves was determined. Results: The average deviation of the 179 uptake values from the calculated points of the respective regression curves was only 1.4%. There was no significant difference between the three disease groups. The distribution of the relative deviations during the individual courses was constant, systematic errors were not detected. Conclusion: Our results suggest that the intrathyroidal iodine kinetics can be precisely described with the model At = A0 * (exp(-λ2t)-exp(-λ1t)). With only three measurements, the trend of the curve can be calculated, which allows to determine the total radioiodine storage in the thyroid.


2018 ◽  
Vol 121 (5) ◽  
pp. 519-528 ◽  
Author(s):  
Long Tan ◽  
XiaoXiao Tian ◽  
WenQiang Wang ◽  
XiaoHui Guo ◽  
ZhongNa Sang ◽  
...  

AbstractThere is a dearth of data on the iodine balance studies of Chinese population. In the present study, we aimed to explore the appropriate recommended nutrient intake (RNI) of iodine based on healthy Chinese women. A 4-week study was conducted in twenty-five Chinese euthyroid women. Uniform diets with different iodine contents were provided in two different periods, in which non-iodised salt was given in the first 3 weeks, followed by 1 week of iodised salt administration. The total iodine intake from diet, water and air as well as the total iodine excretion through urine, faeces and respiration were monitored and determined. The sweat iodine loss was also considered. Moreover, the regression curve model was established between the 24 h iodine intake and 24 h iodine excretion. The 24 h iodine intake in the two periods was 194·8 (sd 62·9) and 487·1 (sd 177·3) μg/d, respectively. The 24 h iodine excretion was 130·9 (sd 39·5) and 265·4 (sd 71·8) μg/d, respectively. Both 24 h iodine intake and 24 h iodine excretion of the two periods were significantly different (all P<0·05). The iodised salt contributed approximately 62·7 % of the total daily iodine intake. Moreover, 92·3 % (277/300) of samples were in positive balance, while twenty-three cases were in negative balance. Our data show that the estimated average requirement for iodine was 110·5 μg/d. Therefore, the RNI for iodine to non-pregnant, non-lactating Chinese women was 154·7 μg/d.


Sign in / Sign up

Export Citation Format

Share Document