scholarly journals The sterilization of surgical rubber gloves and plastic tubing by means of ionizing radiation

1960 ◽  
Vol 58 (4) ◽  
pp. 465-472 ◽  
Author(s):  
R. Oliver ◽  
A. H. Tomlinson

Threads were infected with the spores of four species of bacteria and put inside rubber gloves which were sealed into plastic bags and irradiated with electrons or gamma rays. A dose of 1·5 Mrad. killed approximately 99·99% of the spores of each species and a dose of 2·5 Mrad. appeared to give an adequate margin of safety for sterilization. Spores were similarly killed inside plastic tubing and within the lumen of hypodermic needles.The tensile strength of the gloves decreased with increasing doses of radiation so that the rough, solution-dipped gloves tested were significantly weaker after 8·0 Mrad., but the smooth gloves tested still complied with the British Standard after 30 Mrad. When vacuum-packed before irradiation, rough gloves were still satisfactory after 16 Mrad., and smooth gloves were apparently unaffected by 30 Mrad.; they could, therefore, be sterilized six and twelve times, respectively.Radiation gives dependable sterilization of rubber gloves, and the use of a sealed plastic package obviates subsequent contamination. The possibility of using disposable radiation-sterilized gloves is discussed, the use of a plastic radiation indicator suggested and the practical applications of radiation sterilization in the hospital considered.

2021 ◽  
Vol 899 ◽  
pp. 172-178
Author(s):  
Rezeda Yu. Galimzyanova ◽  
Maria S. Lisanevich ◽  
Yuri N. Khakimullin

Radiation sterilization is widely used to sterilize nonwoven SMS medical products. SMS materials have improved filtering and barrier properties, low bacteriopermeability and, due to these properties, are indispensable for medicine. They are used to make such important health care products as disposable surgical clothing and underwear. As a result of the research carried out, the effect of gamma and electron radiation, in the range of absorbed doses from 15 to 25 kGy, on the strength characteristics of nonwoven SMS materials based on polypropylene with a surface density of 35, 40, 50 g/cm2 was studied. It has been established that the strength characteristics (tensile strength, tensile strength, and tear strength) of nonwoven materials decrease after exposure to ionizing radiation. The higher the density of the material, the more its characteristics decrease after radiation sterilization. It was also found that gamma radiation, due to its nature, has a stronger effect on nonwoven materials based on polypropylene, and leads to a stronger decrease in strength characteristics. In general, for products sterilized by ionizing radiation and made from SMS materials, it is important to control the strength characteristics, primarily, the tensile strength in the transverse direction of the web stuff.


2019 ◽  
Vol 65 (3) ◽  
pp. 441-446
Author(s):  
Valentina Rybkina ◽  
Tamara Azizova ◽  
Yevgeniya Grigoreva

Purpose of the study. The study is aimed to investigate skin melanoma incidence in workers occupationally exposed to radiation over a prolonged period. Materials and methods. Skin melanoma incidence was studied in a cohort of workers first employed at nuclear facility Mayak Production Association (PA) between 1948 and 1982 who had been followed up till 31.12.2013 (22,377 individuals). Mean cumulative doses from external gamma-rays over the whole follow-up period were 0.54±0.001 Sv in males and 0.44±0.002 Sv in females. Incident rates for skin melanoma were analyzed by sex, attained age, calendar period of diagnostics and radiation dose using worldwide standard and the direct standardization technique. Results. 60 skin melanoma cases (37 in males and 23 in females) were registered in the study cohort over the whole follow-up period. The standardized skin melanoma incident rate was 8.51±1.46 in males and 8.78±2.27 in females per 100000 workers revealing statistically higher rates compared to corresponding rates for general populations of the Russian Federation, Urals Federal District and Chelyabinsk region. Skin melanoma incidence was significantly increased in the period of 1994 - 2013 as compared to the period of 1974 - 1993. Skin melanoma incidence excess in females was greater than that for males. Skin melanoma incidence increment in females was mostly driven by modifications of disease occurrence risk while in males it was driven by a combined effect of age pattern modifications in the study cohort and increase of disease risk. Conclusions. Skin melanoma incidence rates in the cohort of workers occupationally exposed to ionizing radiation over a prolonged period were associated with sex and attained age workers and the calendar period of diagnostics. No significant association of skin melanoma incidence with dose from external gamma-rays was observed. A significantly increasing trend was observed for skin melanoma incidence by the end of the follow-up in both males and females.


2021 ◽  
pp. 78-79
Author(s):  
Avni KP Skandhan ◽  
Skandhan KP ◽  
Prasad BS

Our knowledge on X-rays, gamma rays and ultraviolet radiation is ionising . Non-ionising gadget radiation is from Mobile Phone, Laptop, Tablet Smart TV etc. and harmful radiations is from mobile towers . FM radio waves, Microwaves, Visible light are also other forms of non-ionizing radiation.


2018 ◽  
Vol 33 (1-2) ◽  
pp. 1-4
Author(s):  
Md Kamruzzaman Pramanik ◽  
Abdul Bathen Miah ◽  
Md Khorshed Alam

The aim of the study was to preserve paper-based archived material for a long period of time using ionizing radiation/nuclear technique. To conduct this research, old note-pad samples were selected as tentative archived material. Samples were prepared and irradiated at a series of radiation doses e.g. 0, 2.0, 4.0, 6.0, 8.0, 10.0 and 14.0 kGy at a dose rate of 12.8 kGy/h from panaromic Batch type 80 kCi 60Co source. After irradiation, different quality parameters such as microbiological (Total Viable Bacterial Count, Total Fungal Count), mechanical (Tensile Strength, Percent of Elongation at Break and Elastic Modulus) and color properties (L-value, a-value and b-value) of the samples were assessed to observe the immediate effect of ionizing radiation on these properties. Results showed that the total bacterial count of unirradiated (control) paper were 4.0X102 cfu/g and radiation dose of 2.0 kGy was enough to eliminate the microbial load completely. Among mechanical properties, tensile strength (TS) of unirradiated sample was 16.23 MPa and it was gradually increased as the dose increased and finally reached upto 18.99 MPa at a dose of 14 kGy causing the TS-change above significant level (p < 0.05). Though changes of percent of elongation at break (EB) due to irradiation was insignificant, elastic module (EM) increased as the radiation dose increased gradually. EM of non irradiated sample was 381.85N/m2 and it started changing significantly from 6.0 kGy and finally reaches upto 477.03 N/m2 at 14.0 kGy. Results showed that L-value of colour parameter changed very slightly though a and b-value changed significantly from 6.0 kGy. From these findings it can be inferred that a radiation dose of 4.0 kGy might be used to conserve the cultural heritage including valuable paper-based archived materials. Bangladesh J Microbiol, Volume 33, Number 1-2, June-Dec 2016, pp 1-4


2021 ◽  
pp. 002199832110417
Author(s):  
Wei Chen ◽  
Yifan Wang ◽  
Kun Zhang ◽  
Fujun Xu

Carbon nanotube (CNT) fiber/yarn reinforced composites are considered as a new generation of advanced materials for applications in aerospace and space industry. In this study, two types of CNT composite yarns were produced by twisting CNT films and infiltrating with thermoset epoxy (EP) and thermoplastic poly vinyl alcohol (PVA) resins. The tensile strength of CNT/PVA and CNT/EP composite yarn was 409.91 MPa and 206.87 MPa, much higher than that of pure CNT yarn (129.94 MPa). After mono-cryogenic condition, the mechanical and electrical properties of CNT/EP and CNT/PVA composite yarns were both enhanced due to the structure reorder of the CNT bundles and improvement of interfacial bonding. However, after 60 times cyclic-cryogenic conditions, CNT/EP composite yarn showed a ∼10% degradation of tensile strength; while CNT/PVA composite yarn exhibited 6% increment. This study provides fundamental data of the CNT reinforced thermoset and thermoplastic composite yarns for their practical applications in cryogenic environment.


2020 ◽  
Vol 992 ◽  
pp. 403-408
Author(s):  
Elvina R. Rakhmatullina ◽  
M.S. Lisanevich ◽  
Rezeda Yu. Galimzyanova ◽  
Yu.N. Khakimullin

Non-woven materials are widely used for the manufacture of disposable medical clothing and underwear. Radiation is widely used to sterilize single-use medical devices. The paper analyzes the effect of ionizing radiation at absorbed doses of 0-60 kGy on the stress-strain properties of medical non-woven spanmelt material based on polypropylene obtained by blow-molding technology. It has been established that ionizing radiation significantly reduces the breaking load and elongation in the machine and cross directions of the web. For this type of material, the most critical is the decrease in strength in the cross direction of the web, primarily because the level of strength in the cross direction of spanmelt materials is generally low. Sterilization by ionizing radiation further reduces strength and leads to the fact that non-woven materials irradiated with an absorbed dose of 50-60 kGy are close to unacceptable values in accordance with the requirements of EN 13975-2011.


1982 ◽  
Vol 45 (11) ◽  
pp. 1044-1050 ◽  
Author(s):  
NOBUMASA TANAKA

A study was done to evaluate the antibotulinal safety of pasteurized process cheese spreads and to compare two different published methods of inoculation of cheese spreads with Clostridium botulinum spores. Pasteurized process cheese spreads of various compositions were challenged with approximately 1,000 spores per g of C. botulinum types A and B. Two different methods of challenge were tested: (a) an “in-process” or “hot” inoculation in which a spore suspension was added to hot cheese spread in a cooker during agitation, and (b) a “post-process” or “cold” inoculation in which 0.1 ml of heat-shocked (80°C, 10 min) spore suspension was added to cheese spread already packed in glass jars and stirred. Certain products that were thought to have an adequate margin of safety by hot challenge studies became toxic when challenged by the cold method. Experiments to check localization of the spores in cold-inoculated cheese spread produced results suggesting that the concentration of the inoculum plus the localized diluting effect of added water in the cold-inoculated cheese spread probably account for the discrepancy between the two procedures.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Jong-Seok Park ◽  
Jong-Bae Choi ◽  
Hui-Jeong Gwon ◽  
Youn-Mook Lim ◽  
Myung Seob Khil ◽  
...  

A nanoporous high-density polyethylene (HDPE) membrane was prepared by a wet process. Soybean oil and dibutyl phthalate (DBP) were premixed as codiluents, and gamma-rays were used for the cross-linking of HDPE. The pore volume of the nanoporous HDPE membranes with soybean oil was affected by the extracted amount of oil. The tensile strength of the membrane improved with an increasing absorbed dose up to 60 kGy, but decreased at 80 kGy due to severe degradation. The ionic conductivity of the nanoporous HDPE membrane did not really change with an increasing absorbed dose because the pores had already been formed before the gamma-ray radiation. Finally, the electrochemical stability of the HDPE membrane increased when the absorbed dose increased up to 60 kGy.


Sign in / Sign up

Export Citation Format

Share Document