Plasma models of the topside ionosphere and electrostatic wave propagation

1971 ◽  
Vol 6 (3) ◽  
pp. 567-577 ◽  
Author(s):  
M. T. C. Fang ◽  
M. K. Andrews

The circumstances under which certain plasma dispersion equations may be used in electrostatic ray tracing problems connected with studies of ionospheric topside plasma resonances are investigated. Three plasma ‘models’ of increasing complexity are compared with each other. The models are based on the assumption of: (i) an adiabatic process with a scalar pressure, (ii) a fully adiabatic process (Buneman 1961), and (iii) an electrostatic kinetic description. It is found that near fN, and within 10° of the static magnetic field, all three models may be used with good accuracy, and collisionless damping is very small. Near fT, and for propagation nearly across the field, only the second model (ii) gives tolerably accurate results as judged by the kinetic equation. For frequencies within 10 kc s-1 of fT such as are encountered in ray tracing, collisionless damping may be neglected within a cone of ∽ 10° about the perpendicular to the field for fT < 2fH, and within ∽ 20° whenfT ≫ 2fH Model (iii) may be used to examine the dispersion equation near the electron gyroharmonics: this topic is discussed in Andrews & Fang (1971).

1975 ◽  
Vol 13 (2) ◽  
pp. 327-334 ◽  
Author(s):  
K. P. Das

Starting from the kinetic equation and Maxwell's equations, a dispersion relation is obtained for wave propagation through a fully-ionized plasma along a spatially-uniform, external, periodic magnetic field B0 cos ω0t, and several excitation conditions are deduced. The parametri excitation of waves in a plasma by spatially uniform external periodic electric field has been considered by several authors (Aiev & Silim 1965; Montgomery & Alexeff 1966; Jackson 1967; Prasad 1967, 1968; Nishikawa 1968 a, b). The effect of spatially uniform external periodic magnetic field on wave propagation through a hot plasma was considered by Das (1971), who used hydrodynamic equations to study the effect of wave propagation perpendicular to a spatially-uniform, external, periodic magnetic field.


1974 ◽  
Vol 12 (1) ◽  
pp. 21-26 ◽  
Author(s):  
Jang-Yu Hsu ◽  
David Montgomery ◽  
Glenn Joyce

A theory is presented for the rate of thermal relaxation of a two-dimensional plasma in a strong uniform d.c. magnetic field. The Vahala—Montgomery kinetic description is completed by providing a cut-off time for the time of interaction of two particles which contribute to the collision term. The kinetic equation preclicts that thermal relaxation occurs as a function of the dimensionless time (ωpt) (ωp/Ω) (n0λ2D)−½, where ωp, is the plasma frequency, Ω is the gyrofrequency, and n0 λ2D is the number of particles per Debye square. By contrast, in the absence of an external magnetic field, a two-dimensional plasma relaxes as a function of (ωpt) (n0λ2D)−1.


1966 ◽  
Vol 62 (3) ◽  
pp. 541-545 ◽  
Author(s):  
C. M. Purushothama

AbstractIt has been shown that uncoupled surface waves of SH type can be propagated without any dispersion in an electrically conducting semi-infinite elastic medium provided a uniform magnetic field acts non-aligned to the direction of wave propagation. In general, the velocity of propagation will be slightly greater than that of plane shear waves in the medium.


1982 ◽  
Vol 28 (1) ◽  
pp. 93-101
Author(s):  
Sanjay Kumar Ghosh

Starting from the two-fluid model hydrodynamic equations, a dispersion relation is obtained for wave propagation through a two-temperature plasma perpendicular to the direction of the spatially uniform external magnetic field B0cosω0t and several excitation conditions are deduced.


1999 ◽  
Vol 61 (1) ◽  
pp. 121-128 ◽  
Author(s):  
I. P. SHKAROFSKY

To trace rays very close to the nth electron cyclotron harmonic, we need the mildly relativistic plasma dispersion function and its higher-order derivatives. Expressions for these functions have been obtained as an expansion for nearly perpendicular propagation in a region where computer programs have previously experienced difficulty in accuracy, namely when the magnitude of (c/vt)2 (ω−nωc)/ω is between 1 and 10. In this region, the large-argument expansions are not yet valid, but partial cancellations of terms occur. The expansion is expressed as a sum over derivatives of the ordinary dispersion function Z. New expressions are derived to relate higher-order derivatives of Z to Z itself in this region of concern in terms of a finite series.


2014 ◽  
Vol 556-562 ◽  
pp. 3039-3042
Author(s):  
Xian Qiang Peng

GPS can’t detect the signal because of the cell complex environment in the outdoor and poor radio wave propagation conditions, so that the positioning result is not ideal. However, the positioning method using the ray tracing prediction of radio waves, the tracking point of the scene from all the source radiation, record the relevant parameters, and then positioned within the microcell environment can satisfy the demand. The principle of ray tracing was firstly introduced in this paper, then an outdoor positioning model was set up, finally, the corresponding simulation experiments was implemented to demonstrate the effectiveness of ray tracing positioning in the outdoor environments.


Sign in / Sign up

Export Citation Format

Share Document