Parametric instabilities of circularly polarized large-amplitude dispersive Alfvén waves: excitation of parallel-propagating electromagnetic daughter waves

1991 ◽  
Vol 46 (1) ◽  
pp. 107-127 ◽  
Author(s):  
Adolfo F. Viñas ◽  
Melvyn L. Goldstein

We investigate the parametric decay and modulational instabilities of a large-amplitude circularly polarized dispersive Alfvén wave. Our treatment is more general than that of previous derivations based on the two-fluid equations in that we allow for propagation of the unstable daughter waves at arbitrary angles to the background magnetic field, although our main concern in this paper is the exploration of new aspects of propagation parallel to the DC magnetic field. In addition to the well-known coupling of pump waves to electrostatic daughter waves, we find a new parametric channel where the pump wave couples directly to electromagnetic daughter waves. Excitation of the electromagnetic instability occurs only for modulation (k/k0 ≤ 1) and not for decay (k/k0 < 1). In contrast with the modulational instability excited by the electrostatic coupling, the electromagnetic modulational instability exists for both left-hand (K > 0) and right-hand (K < 0) polarization. For large k/k0, the electromagnetic channel dominates, while at lower values the electrostatic channel has a larger growth rate for modest values of dispersion, pump-wave amplitude and plasma β. Unlike the electrostatic modulational instability, the growth rate of the electromagnetic instability increases monotonically with increasing pump wave amplitude. This analysis confirms that, for decay, the dominant process is coupling to electrostatic daughter waves, at least for parallel propagation. For modulation, the coupling to electromagnetic daughter waves usually dominates, suggesting that the parametric modulational instability is really an electromagnetic phenomenon.

1977 ◽  
Vol 17 (1) ◽  
pp. 93-103 ◽  
Author(s):  
N. F. Cramer

The parametric excitation of slow, intermediate (Alfvén) and fast magneto-acoustic waves by a modulated spatially non-uniform magnetic field in a plasma with a finite ratio of gas pressure to magnetic pressure is considered. The waves are excited in pairs, either pairs of the same mode, or a pair of different modes. The growth rates of the instabilities are calculated and compared with the known result for the Alfvén wave in a zero gas pressure plasma. The only waves that are found not to be excited are the slow plus fast wave pair, and the intermediate plus slow or fast wave pair (unless the waves have a component of propagation direction perpendicular to both the background magnetic field and the direction of non-uniformity of the field).


2021 ◽  
Author(s):  
Paul M. Bellan

&lt;p&gt;The interaction between a circularly polarized electromagnetic wave and an energetic gyrating particle is described [1] using a relativistic pseudo-potential that is a function of the frequency mismatch,&amp;#160; a measure of the extent to which &amp;#969;-k&lt;sub&gt;z&lt;/sub&gt;v&lt;sub&gt;z&lt;/sub&gt;=&amp;#937;/&amp;#947; is not true. The description of this wave-particle interaction involves a sequence of relativistic transformations that ultimately demonstrate that the pseudo potential energy of a pseudo particle adds to a pseudo kinetic energy giving a total pseudo energy that is a constant of the motion. The pseudo kinetic energy is proportional to the square of the particle acceleration (compare to normal kinetic energy which is the square of a velocity) and the pseudo potential energy is a function of the mismatch and so effectively a function of the particle velocity parallel to the background magnetic field (compare to normal potential energy which is a function of position). Analysis of the pseudo-potential provides a means for interpreting particle motion in the wave in a manner analogous to the analysis of a normal particle bouncing in a conventional potential well.&amp;#160; The wave-particle&amp;#160; interaction is electromagnetic and so differs from and is more complicated than the well-known Landau damping of electrostatic waves.&amp;#160; The pseudo-potential profile depends on the initial mismatch, the normalized wave amplitude, and the initial angle between the wave magnetic field and the particle perpendicular velocity. For zero initial mismatch, the pseudo-potential consists of only one valley, but for finite mismatch, there can be two valleys separated by a hill. A large pitch angle scattering of the energetic electron can occur in the two-valley situation but fast scattering can also occur in a single valley. Examples relevant to magnetospheric whistler waves are discussed. Extension to the situation of a distribution of relativistic particles is presented in a companion talk [2].&lt;/p&gt;&lt;p&gt;[1] P. M. Bellan, Phys. Plasmas 20, Art. No. 042117 (2013)&lt;/p&gt;&lt;p&gt;[2] Y. D. Yoon and P. M. Bellan, JGR 125, Art. No. e2020JA027796 (2020)&lt;/p&gt;


1999 ◽  
Vol 17 (9) ◽  
pp. 1145-1154 ◽  
Author(s):  
O. Verkhoglyadova ◽  
A. Agapitov ◽  
A. Andrushchenko ◽  
V. Ivchenko ◽  
S. Romanov ◽  
...  

Abstract. Compressional waves with periods greater than 2 min (about 10-30 min) at low geomagnetic latitudes, namely compressional Pc5 waves, are studied. The data set obtained with magnetometer MIF-M and plasma analyzer instrument CORALL on board the Interball-1 are analyzed. Measurements performed in October 1995 and October 1996 in the dawn plasma sheet at -30 RE ≤ XGSM and |ZGSM| ≤ 10 RE are considered. Anti-phase variations of magnetic field and ion plasma pressures are analyzed by searching for morphological similarities in the two time series. It is found that longitudinal and transverse magnetic field variations with respect to the background magnetic field are of the same order of magnitude. Plasma velocities are processed for each time period of the local dissimilarity in the pressure time series. Velocity disturbances occur mainly transversely to the local field line. The data reveal the rotation of the velocity vector. Because of the field line curvature, there is no fixed position of the rotational plane in the space. These vortices are localized in the regions of anti-phase variations of the magnetic field and plasma pressures, and the vortical flows are associated with the compressional Pc5 wave process. A theoretical model is proposed to explain the main features of the nonlinear wave processes. Our main goal is to study coupling of drift Alfven wave and magnetosonic wave in a warm inhomogeneous plasma. A vortex is the partial solution of the set of the equations when the compression is neglected. A compression effect gives rise to a nonlinear soliton-like solution.Key words. Magnetosphere physics (magnetotail) · Space plasma physics (kinetic and MHD theory; non-linear phenomena)


2014 ◽  
Vol 21 (1) ◽  
pp. 217-236 ◽  
Author(s):  
V. Muñoz ◽  
F. A. Asenjo ◽  
M. Domínguez ◽  
R. A. López ◽  
J. A. Valdivia ◽  
...  

Abstract. Propagation of large-amplitude waves in plasmas is subject to several sources of nonlinearity due to relativistic effects, either when particle quiver velocities in the wave field are large, or when thermal velocities are large due to relativistic temperatures. Wave propagation in these conditions has been studied for decades, due to its interest in several contexts such as pulsar emission models, laser-plasma interaction, and extragalactic jets. For large-amplitude circularly polarized waves propagating along a constant magnetic field, an exact solution of the fluid equations can be found for relativistic temperatures. Relativistic thermal effects produce: (a) a decrease in the effective plasma frequency (thus, waves in the electromagnetic branch can propagate for lower frequencies than in the cold case); and (b) a decrease in the upper frequency cutoff for the Alfvén branch (thus, Alfvén waves are confined to a frequency range that is narrower than in the cold case). It is also found that the Alfvén speed decreases with temperature, being zero for infinite temperature. We have also studied the same system, but based on the relativistic Vlasov equation, to include thermal effects along the direction of propagation. It turns out that kinetic and fluid results are qualitatively consistent, with several quantitative differences. Regarding the electromagnetic branch, the effective plasma frequency is always larger in the kinetic model. Thus, kinetic effects reduce the transparency of the plasma. As to the Alfvén branch, there is a critical, nonzero value of the temperature at which the Alfvén speed is zero. For temperatures above this critical value, the Alfvén branch is suppressed; however, if the background magnetic field increases, then Alfvén waves can propagate for larger temperatures. There are at least two ways in which the above results can be improved. First, nonlinear decays of the electromagnetic wave have been neglected; second, the kinetic treatment considers thermal effects only along the direction of propagation. We have approached the first subject by studying the parametric decays of the exact wave solution found in the context of fluid theory. The dispersion relation of the decays has been solved, showing several resonant and nonresonant instabilities whose dependence on the wave amplitude and plasma temperature has been studied systematically. Regarding the second subject, we are currently performing numerical 1-D particle in cell simulations, a work that is still in progress, although preliminary results are consistent with the analytical ones.


2020 ◽  
Author(s):  
Jiansen He ◽  
Chuanpeng Hou ◽  
Xingyu Zhu ◽  
Qiaowen Luo ◽  
Daniel Verscharen ◽  
...  

&lt;p&gt;Wave-particle interaction plays a critical role in producing the newborn waves/turbulence in the foreshock region in front of supercritical shock, which is prevalent in the heliosphere. It has been a long-lasting goal to catch and witness the excitation and growth of waves/turbulence by identifying the ongoing process of wave-particle interaction. This goal cannot be fulfilled until the arrival of the MMS&amp;#8217;s era, during which we can simultaneously measure the electromagnetic fields and particle phase space densities with the unprecedented data quality. By surveying the data of burst mode, we are lucky to find some good examples illustrating the clear signals of wave activities in front of the shock. The active waves are diagnosed to be right-handed cyclotron waves, being highly circularly polarized and rotating right-handed about the background magnetic field vector. The waves are large amplitude with dB being greatly dominant over B0, or in other words, almost the whole magnetic field vector is involved in the circular rotation. Furthermore, we investigate the growth evolution of the large-amplitude cyclotron waves by calculating the spectrum of dJ.dE and its ratio to the electromagnetic energy spectrum. As far as we know, it is the first time to provide the spectrum of growth rate from in-situ measurements. Interestingly, we find that the contribution to the growth rate spectrum mainly comes from dJ&lt;sub&gt;e,perp&lt;/sub&gt;&amp;#183;dE&lt;sub&gt;perp&lt;/sub&gt; rather than dJ&lt;sub&gt;e,para&lt;/sub&gt;&amp;#183;dE&lt;sub&gt;para&lt;/sub&gt; or d&lt;strong&gt;J&lt;/strong&gt;&lt;sub&gt;i&lt;/sub&gt;&amp;#183;d&lt;strong&gt;E&lt;/strong&gt;. Although the eigen mode to couple the oscillating electromagnetic field is the electron bulk oscillation, the ultimate free energy to make the eigen mode unstable comes from the ion beams, which are reflected from the shock. The dynamics of 3D phase space densities for both ion and electron species are also studied in detail together with the fluctuating electromagnetic field, demonstrating the ongoing energy conversion during the wave-particle process.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


2013 ◽  
Vol 79 (5) ◽  
pp. 833-836 ◽  
Author(s):  
B. K. DAS ◽  
R. P. SHARMA ◽  
N. YADAV

AbstractThe paper is concerned with the analytical study of nonlinear coupling of slow Alfvén wave (SW) with ion acoustic waves (IAWs) in high-β and low-β plasmas. Here the pump wave (SW) number density gets perturbed in the presence of IAW. The model equations of IAW and SW turn out to be the modified Zakharov system of equations when the ponderomotive nonlinearities are incorporated in the IAW and SW dynamics. Growth rate of modulational instability has been calculated. The relevance of these investigations for solar wind plasma and solar coronal plasma has also been discussed.


2020 ◽  
Author(s):  
Gangkai Poh ◽  
Jared Espley ◽  
Norberto Romanelli ◽  
Jacob Gruesbeck ◽  
Gina DiBraccio

&lt;p&gt;In this study, we present a preliminary analysis of large-amplitude sawtooth-like magnetic field oscillations observed by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft at Mars. Initial survey of these quasi-periodic magnetic field oscillations (with periods of ~3 &amp;#8211; 4 minutes) shows distinct sawtooth-like magnetic field signatures with steep increase in B&lt;sub&gt;Y&lt;/sub&gt; of ~20 &amp;#8211; 30 nT, followed by a gentle, but turbulent, return to background magnetic field values. The extrema in the B&lt;sub&gt;Y&lt;/sub&gt; component generally coincide with an extrema of opposite polarity in the B&lt;sub&gt;X&lt;/sub&gt; component. Quasi-periodic magnetic field signatures can also be observed in the z-component of the magnetic field vector. Ion and electrons measurements shows corresponding increase in ions and electrons with energies greater than 30eV and 10 eV, respectively, during observations of these sawtooth-like oscillations, indicating some mixing of plasma. We interpret these observations as Kelvin-Helmholtz (KH) waves in the non-linear stages because the plasma and fields signatures are consistent with non-linear KH waves observed at Earth and other planetary environments. KH waves are developed as a result of flow shear-driven KH instability occurring between the boundary separating two moving fluids. In the non-linear stage of the KH instability, rolled-up KH vortex can developed along the boundary, allowing the mixing of plasma between the two plasma regions. Occurrence of KH waves had been observed at Venus&amp;#8217; ionopause and the induced magnetopause, contributing to loss of planetary ions in the form of plasma clouds. Earlier simulations and observational studies have also explored the possibility of non-linear KH instability occurring at Mars. We will discuss the conditions required for the development of KH instability, its growth rate and implications on mass loss at Mars. Comparison with simulations will also be conducted and discussed.&lt;/p&gt;


1982 ◽  
Vol 35 (4) ◽  
pp. 409
Author(s):  
Bhimsen K Shivamoggi

This paper makes a study of stimulated Raman scattering and stimulated Brillouin scattering of an incident electromagnetic pump wave in a magnetized plasma. The background magnetic field is taken to be parallel to the pump electric field. The growth rates of the two stimulated-scattering instabilities are found to be reduced in the presence of the background magnetic field.


Sign in / Sign up

Export Citation Format

Share Document