Stability of Vlasov equilibria. Part 1. General theory

1982 ◽  
Vol 27 (1) ◽  
pp. 13-24 ◽  
Author(s):  
K. R. Symon ◽  
C. E. Seyler ◽  
H. R. Lewis

We present a general formulation for treating the linear stability of inhomogeneous plasmas for which at least one species is described by the Vlasov equation. Use of Poisson bracket notation and expansion of the perturbation distribution function in terms of eigenfunctions of the unperturbed Liouville operator leads to a concise representation of the stability problem in terms of a symmetric dispersion functional. A dispersion matrix is derived which characterizes the solutions of the linearized initial-value problem. The dispersion matrix is then expressed in terms of a dynamic spectral matrix which characterizes the properties of the unperturbed orbits, in so far as they are relevant to the linear stability of the system.

1963 ◽  
Vol 41 (12) ◽  
pp. 1960-1966 ◽  
Author(s):  
Ta-You Wu ◽  
M. K. Sundaresan

The linearized Vlasov equation is solved as an initial value problem by expanding (the Fourier components of) the distribution function in a series of Hermite polynomials in the momentum, with coefficients which are functions of time. The spectrum of frequencies is given by the eigenvalues of an infinite matrix. All the frequencies ω are real, extending from small values of order ω2 = k2(u22), where (u22) is the mean square velocity of the positive ions (of mass M), to [Formula: see text], where ω1, (u12) are the plasma frequency and mean square velocity of the electrons (of mass m). The classic work of Landau solves the Vlasov equation for (the Fourier transform of) the potential for which he obtains the "damping", whereas Van Kampen and the present writers solve the equation for (the Fourier transform of) the distribution function itself. While the present work gives results equivalent to those of Van Kampen, the method is simpler and in fact elementary.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Dorota Mozyrska ◽  
Małgorzata Wyrwas

The Caputo-, Riemann-Liouville-, and Grünwald-Letnikov-type difference initial value problems for linear fractional-order systems are discussed. We take under our consideration the possible solutions via the classicalZ-transform method. We stress the formula for the image of the discrete Mittag-Leffler matrix function in theZ-transform. We also prove forms of images in theZ-transform of the expressed fractional difference summation and operators. Additionally, the stability problem of the considered systems is studied.


2013 ◽  
Vol 737 ◽  
pp. 205-231 ◽  
Author(s):  
Duncan R. Hewitt ◽  
Jerome A. Neufeld ◽  
John R. Lister

AbstractConvection in a porous medium at high Rayleigh number $\mathit{Ra}$ exhibits a striking quasisteady columnar structure with a well-defined and $\mathit{Ra}$-dependent horizontal scale. The mechanism that controls this scale is not currently understood. Motivated by this problem, the stability of a density-driven ‘heat-exchanger’ flow in a porous medium is investigated. The dimensionless flow comprises interleaving columns of horizontal wavenumber $k$ and amplitude $\widehat{A}$ that are driven by a steady balance between vertical advection of a background linear density stratification and horizontal diffusion between the columns. Stability is governed by the parameter $A= \widehat{A}\mathit{Ra}/ k$. A Floquet analysis of the linear-stability problem in an unbounded two-dimensional domain shows that the flow is always unstable, and that the marginal-stability curve is independent of $A$. The growth rate of the most unstable mode scales with ${A}^{4/ 9} $ for $A\gg 1$, and the corresponding perturbation takes the form of vertically propagating pulses on the background columns. The physical mechanism behind the instability is investigated by an asymptotic analysis of the linear-stability problem. Direct numerical simulations show that nonlinear evolution of the instability ultimately results in a reduction of the horizontal wavenumber of the background flow. The results of the stability analysis are applied to the columnar flow in a porous Rayleigh–Bénard (Rayleigh–Darcy) cell at high $\mathit{Ra}$, and a balance of the time scales for growth and propagation suggests that the flow is unstable for horizontal wavenumbers $k$ greater than $k\sim {\mathit{Ra}}^{5/ 14} $ as $\mathit{Ra}\rightarrow \infty $. This stability criterion is consistent with hitherto unexplained numerical measurements of $k$ in a Rayleigh–Darcy cell.


1983 ◽  
Vol 29 (2) ◽  
pp. 275-286 ◽  
Author(s):  
K. R. Symon

Several conclusions regarding the stability of inhomogeneous Vlasov equilibria are drawn from earlier work. A technique is presented for generating first-order formulae for the change δω in the frequency of any normal mode, when a parameter λ characterizing the equilibrium is changed slightly. Several applications are given, including a first-order calculation of the growth rate or damping of an electromagnetic mode due to the presence of plasma. A condition is derived for the existence of a normal mode with real frequency. When there are ignorable co-ordinates, the normal modes can be written in the form of waves propagating in the ignorable directions. The character of the modes depends on certain symmetries in the dynamic spectral matrix. Special cases arise when the orbits can be approximated in certain ways.


1988 ◽  
Vol 03 (03) ◽  
pp. 665-702 ◽  
Author(s):  
P.A. HORVÁTHY ◽  
L. O’RAIFEARTAIGH ◽  
J.H. RAWNSLEY

For monopoles with nonvanishing Higgs potential it is shown that with respect to “Brandt-Neri-Coleman type” variations (a) the stability problem reduces to that of a pure gauge theory on the 2-sphere (b) each topological sector admits one, and only one, stable monopole charge, and (c) each nonstable monopole admits 2∑2|q|−1 negative modes where the sum goes over all negative eigenvalues q of the non-Abelian charge Q. An explicit construction for (i) the unique stable charge (ii) the negative modes and (iii) the spectrum of the Hessian, on the 2-sphere, is then given. The relation to loops in the residual group is explained. The negative modes are tangent to suitable energy-reducing two-spheres. The general theory is illustrated for the little groups U (2), U (3), SU (3)/ℤ3 and O (5).


Author(s):  
Paul Schwahn

AbstractWe prove the linear stability with respect to the Einstein-Hilbert action of the symmetric spaces $${\text {SU}}(n)$$ SU ( n ) , $$n\ge 3$$ n ≥ 3 , and $$E_6/F_4$$ E 6 / F 4 . Combined with earlier results, this resolves the stability problem for irreducible symmetric spaces of compact type.


Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter covers the equations governing the evolution of particle distribution and relates the macroscopic thermodynamical quantities to the distribution function. The motion of N particles is governed by 6N equations of motion of first order in time, written in either Hamiltonian form or in terms of Poisson brackets. Thus, as this chapter shows, as the number of particles grows it becomes necessary to resort to a statistical description. The chapter first introduces the Liouville equation, which states the conservation of the probability density, before turning to the Boltzmann–Vlasov equation. Finally, it discusses the Jeans equations, which are the equations obtained by taking various averages over velocities.


In the first part of this paper opportunity has been taken to make some adjustments in certain general formulae of previous papers, the necessity for which appeared in discussions with other workers on this subject. The general results thus amended are then applied to a general discussion of the stability problem including the effect of the trailing wake which was deliberately excluded in the previous paper. The general conclusion is that to a first approximation the wake, as usually assumed, has little or no effect on the reality of the roots of the period equation, but that it may introduce instability of the oscillations, if the centre of gravity of the element is not sufficiently far forward. During the discussion contact is made with certain partial results recently obtained by von Karman and Sears, which are shown to be particular cases of the general formulae. An Appendix is also added containing certain results on the motion of a vortex behind a moving cylinder, which were obtained to justify certain of the assumptions underlying the trail theory.


Sign in / Sign up

Export Citation Format

Share Document