Filamentation instability of electron/ion beams in magnetized plasma waveguide

2013 ◽  
Vol 80 (1) ◽  
pp. 81-87 ◽  
Author(s):  
A. Hasanbeigi ◽  
S. Moghani ◽  
S. Azimi ◽  
H. Mehdian

AbstractThe filamentation instability due to the interaction of two relativistic electron and ion beams with magnetized plasma in a waveguide is studied within the framework of a macroscopic cold fluid description. It is assumed that the background plasma provides charge and current neutralization of the injected beams. The dispersion relation is obtained by solving wave eigenvalue equation. The resulting dispersion equation is analyzed numerically over a wide range of system parameters. It is found that the velocity difference factor can strongly affect the filamentation instability.

1989 ◽  
Vol 7 (1) ◽  
pp. 85-109 ◽  
Author(s):  
Ronald C. Davidson ◽  
Han S. Uhm

The kinetic stability properties of relativistic nonneutral electron flow in planar diode geometry are examined for extraordinary-mode perturbations about the self-consistent Vlasov equilibrium . Here, the cathode is located at x = 0; the anode is located at x = d the outer edge of the electron layer is located at is the equilibrium flow velocity in the x-direction; n^b is the electron density at the cathode (x = 0); and is the axial magnetic field, with const. in the vacuum region (xb < x ≤ d). The extraordinary-mode eigenvalue equation, derived in a companion paper for low-frequency, long-wavelength perturbations, is solved exactly. This leads to a formal dispersion relation, which can be used to determine the complex eigenfrequency ω over a wide range of system parameters and wavenumber k in the y-direction. The formal dispersion relation is further simplified for and , assuming low-frequency perturbations about a tenuous electron layer with and . Here, , and , where denotes the average equilibrium orbit, and [γ(x) − 1]mc2 is the average kinematic energy of an electron fluid element. The resulting approximate dispersion relation is solved numerically over a wide range of system parameters to determine the detailed dependence of stability properties on electromagnetic effects, layer thickness, and electron energy, as measured by , and γb − 1, respectively. Here, γb = γ(xb) denotes the electron energy at the outer edge of the electron layer. As a general remark, it is found that increasing the electron energy (γb − 1), increasing the strength of electromagnetic effects , and/or decreasing the layer thickness (xb/d) all have a stabilizing influence.


2014 ◽  
Vol 32 (3) ◽  
pp. 353-358 ◽  
Author(s):  
A. Hasanbeigi ◽  
S. Moghani ◽  
H. Mehdian

AbstractA fluid description is used to study the properties of two-stream instability due to interaction of a non-relativistic electron beam with quantum magnetized plasma and transverse wiggler magnetic field. It is assumed that the background plasma provides charge and current neutralization of the electron beam. The dispersion relation is obtained by solving and linearizing fluid-Maxwell equations. The resulting dispersion equation is analyzed numerically over a wide range of system parameters. The results of quantum and classical treatments are compared numerically, with including the effects of wiggler on the dispersion relation. It is found that the transverse wiggler magnetic field can strongly improve the instability of quantum plasma as well as classical plasma.


2021 ◽  
Vol 217 (3) ◽  
Author(s):  
K. J. Trattner ◽  
S. M. Petrinec ◽  
S. A. Fuselier

AbstractOne of the major questions about magnetic reconnection is how specific solar wind and interplanetary magnetic field conditions influence where reconnection occurs at the Earth’s magnetopause. There are two reconnection scenarios discussed in the literature: a) anti-parallel reconnection and b) component reconnection. Early spacecraft observations were limited to the detection of accelerated ion beams in the magnetopause boundary layer to determine the general direction of the reconnection X-line location with respect to the spacecraft. An improved view of the reconnection location at the magnetopause evolved from ionospheric emissions observed by polar-orbiting imagers. These observations and the observations of accelerated ion beams revealed that both scenarios occur at the magnetopause. Improved methodology using the time-of-flight effect of precipitating ions in the cusp regions and the cutoff velocity of the precipitating and mirroring ion populations was used to pinpoint magnetopause reconnection locations for a wide range of solar wind conditions. The results from these methodologies have been used to construct an empirical reconnection X-line model known as the Maximum Magnetic Shear model. Since this model’s inception, several tests have confirmed its validity and have resulted in modifications to the model for certain solar wind conditions. This review article summarizes the observational evidence for the location of magnetic reconnection at the Earth’s magnetopause, emphasizing the properties and efficacy of the Maximum Magnetic Shear Model.


2009 ◽  
Vol 15 (S3) ◽  
pp. 87-88
Author(s):  
José A. R. Pacheco de Carvalho ◽  
Cláudia F. F. P. R. Pacheco ◽  
António D. Reis

AbstractMaterial analysis, specially surface analysis of materials, has been increasingly important. A wide range of surface analysis techniques is available. The techniques are, generally, complementary. There are nuclear and non-nuclear techniques, e.g. microscopy. Nuclear techniques, which are nondestructive, permit analysis for a few microns near the surface. They have been applied to areas such as scientific, technologic, industry, arts and medicine, using MeV ion beams. Nuclear reactions permit to achieve high sensitivities for detection of light elements in heavy substrates and also discrimination of isotopes. We use ion-ion nuclear reactions, elastic scattering and the energy analysis method, where an energy spectrum is obtained of ions from the target for a chosen energy of the incident ion beam. The target composition and concentration profile information contained in the spectrum is computationally obtained through a computer program that has been developed for predicting such energy spectra. Predicted spectra obtained for variations of target parameters are compared with experimental data, giving that information. SEM and TEM are also used.


2020 ◽  
Vol 496 (3) ◽  
pp. 3700-3707
Author(s):  
L Liberato ◽  
O C Winter

ABSTRACT Although the search for extrasolar co-orbital bodies has not had success so far, it is believed that they must be as common as they are in the Solar system. Co-orbital systems have been widely studied, and there are several works on stability and even on formation. However, for the size and location of the stable regions, authors usually describe their results but do not provide a way to find them without numerical simulations, and, in most cases, the mass ratio value range is small. In this work, we study the structure of co-orbital stable regions for a wide range of mass ratio systems and build empirical equations to describe them. It allows estimating the size and location of co-orbital stable regions from a few system parameters. Thousands of massless particles were distributed in the co-orbital region of a massive secondary body and numerically simulated for a wide range of mass ratios (μ) adopting the planar circular restricted three-body problem. The results show that the upper limit of horseshoe regions is between 9.539 × 10−4 &lt; μ &lt; 1.192 × 10−3, which corresponds to a minimum angular distance from the secondary body to the separatrix of between 27.239º and 27.802º. We also found that the limit to existence of stability in the co-orbital region is about μ = 2.3313 × 10−2, much smaller than the value predicted by the linear theory. Polynomial functions to describe the stable region parameters were found, and they represent estimates of the angular and radial widths of the co-orbital stable regions for any system with 9.547 × 10−5 ≤ μ ≤ 2.331 × 10−2.


2020 ◽  
Vol 634 ◽  
pp. A96
Author(s):  
E. Vickers ◽  
I. Ballai ◽  
R. Erdélyi

Aims. We investigate the nature of the magnetic Rayleigh–Taylor instability at a density interface that is permeated by an oblique homogeneous magnetic field in an incompressible limit. Methods. Using the system of linearised ideal incompressible magnetohydrodynamics equations, we derive the dispersion relation for perturbations of the contact discontinuity by imposing the necessary continuity conditions at the interface. The imaginary part of the frequency describes the growth rate of waves due to instability. The growth rate of waves is studied by numerically solving the dispersion relation. Results. The critical wavenumber at which waves become unstable, which is present for a parallel magnetic field, disappears because the magnetic field is inclined. Instead, waves are shown to be unstable for all wavenumbers. Theoretical results are applied to diagnose the structure of the magnetic field in prominence threads. When we apply our theoretical results to observed waves in prominence plumes, we obtain a wide range of field inclination angles, from 0.5° up to 30°. These results highlight the diagnostic possibilities that our study offers.


1996 ◽  
Vol 56 (1) ◽  
pp. 107-125 ◽  
Author(s):  
M. S. Ruderman ◽  
M. Goossens

The viscous damping of surface Alfvén waves in a non-uniform plasma is studied in the context of linear and incompressible MHD. It is shown that damping due to resonant absorption and damping on a true discontinuity are two limiting cases of the continuous variation of the damping rate with respect to the dimensionless number Rg = Δλ2Re, where Δ is the relative variation of the local Alfvén velocity, λ is the ratio of the thickness of the inhomogeneous layer to the wavelength, and Re is the viscous Reynolds number. The analysis is restricted to waves with wavelengths that are long in comparison with the extent of the non-uniform layer (λ ≪ 1), and to Reynolds numbers that are sufficiently large that the waves are only slightly damped during one wave period. The dispersion relation is obtained and first investigated analytically for the limiting cases of very small (Rg ≪ 1) and very large (Rg ≫ 1) values of Rg, For very small values of Rg, the damping rate agrees with that found for a true discontinuity, while for very large values of Rg, it agrees with the damping rate due to resonant absorption. The dispersion relation is subsequently studied numerically over a wide range of values of Rg, revealing a continuous but nonmonotonic variation of the damping rate with respect to Rg.


Sign in / Sign up

Export Citation Format

Share Document