scholarly journals SSX MHD plasma wind tunnel

2015 ◽  
Vol 81 (3) ◽  
Author(s):  
Michael R. Brown ◽  
David A. Schaffner

A new turbulent plasma source at the Swarthmore Spheromak Experiment (SSX) facility is described. The MHD wind tunnel configuration employs a magnetized plasma gun to inject high-beta plasma into a large, well-instrumented, vacuum drift region. This provides unique laboratory conditions approaching that in the solar wind: there is no applied background magnetic field in the drift region and has no net axial magnetic flux; the plasma flow speed is on the order of the local sound speed (M ~ 1), so flow energy density is comparable to thermal energy density; and the ratio of thermal to magnetic pressure is of order unity (plasma β ~ 1) so thermal energy density is also comparable to magnetic energy density. Results presented here and referenced within demonstrate the new capabilities and show how the new platform is proving useful for fundamental plasma turbulence studies.

1958 ◽  
Vol 8 ◽  
pp. 1020-1022
Author(s):  
L. Mestel

In a recent paper, Mestel and Spitzer discussed the problem of star formation from cool matter in the presence of a magnetic field of energy density comparable with the thermal energy density. If the field were frozen into the gas, the magnetic pressure would put a lower limit of order 103M⊙ to the mass that could be gravitationally bound, and this limit is unaltered by contraction of the cloud. However, in a lightly ionized gas, the field moves not with the gas as a whole, but with the plasma, and the motion of the plasma through the cloud is determined by a balance between mgnetic force and friction between neutral gas and plasma. A cloud containing sufficient dust can extinguish the galactic ionizing radiation; the plasma density decays quickly enough for the plasma and neutral gas to become uncoupled during the time of gravitational contraction. In this way high densities are built up without correspondingly high magnetic energy, and the cloud can break up into stars.


2021 ◽  
Vol 502 (2) ◽  
pp. 2807-2814
Author(s):  
Martin G H Krause ◽  
Martin J Hardcastle

ABSTRACT The ARCADE 2 balloon bolometer along with a number of other instruments have detected what appears to be a radio synchrotron background at frequencies below about 3 GHz. Neither extragalactic radio sources nor diffuse Galactic emission can currently account for this finding. We use the locally measured cosmic ray electron population, demodulated for effects of the Solar wind, and other observational constraints combined with a turbulent magnetic field model to predict the radio synchrotron emission for the Local Bubble. We find that the spectral index of the modelled radio emission is roughly consistent with the radio background. Our model can approximately reproduce the observed antenna temperatures for a mean magnetic field strength B between 3 and 5 nT. We argue that this would not violate observational constraints from pulsar measurements. However, the curvature in the predicted spectrum would mean that other, so far unknown sources would have to contribute below 100 MHz. Also, the magnetic energy density would then dominate over thermal and cosmic ray electron energy density, likely causing an inverse magnetic cascade with large variations of the radio emission in different sky directions as well as high polarization. We argue that this disagrees with several observations and thus that the magnetic field is probably much lower, quite possibly limited by equipartition with the energy density in relativistic or thermal particles (B = 0.2−0.6 nT). In the latter case, we predict a contribution of the Local Bubble to the unexplained radio background at most at the per cent level.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2682 ◽  
Author(s):  
Guang-Hui Ding ◽  
Bing-He Ma ◽  
Jin-Jun Deng ◽  
Wei-Zheng Yuan ◽  
Kang Liu

A micro-floating element wall shear stress sensor with backside connections has been developed for accurate measurements of wall shear stress under the turbulent boundary layer. The micro-sensor was designed and fabricated on a 10.16 cm SOI (Silicon on Insulator) wafer by MEMS (Micro-Electro-Mechanical System) processing technology. Then, it was calibrated by a wind tunnel setup over a range of 0 Pa to 65 Pa. The measurements of wall shear stress on a smooth plate were carried out in a 0.6 m × 0.6 m transonic wind tunnel. Flow speed ranges from 0.4 Ma to 0.8 Ma, with a corresponding Reynold number of 1.05 × 106~1.55 × 106 at the micro-sensor location. Wall shear stress measured by the micro-sensor has a range of about 34 Pa to 93 Pa, which is consistent with theoretical values. For comparisons, a Preston tube was also used to measure wall shear stress at the same time. The results show that wall shear stress obtained by three methods (the micro-sensor, a Preston tube, and theoretical results) are well agreed with each other.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Michał Lipian ◽  
Maciej Karczewski ◽  
Krzysztof Olasek

AbstractThe Diffuser Augmented Wind Turbine (DAWT) is an innovative mean to increase the power harvested by wind turbine. By encompassing the rotor with a diffusershaped duct it is possible to increase the flow speed through the turbine by about 40-50%. The study presents the development of a numerical model and its validation by the experiments performed in the wind tunnel of the Institute of Turbomachinery, TUL. Then, the numerical model is used for the geometry sensitivity study to optimize the shape of a diffuser. The paper presents that the DAWT technology has the potential to even double the power outcome of wind turbine when compared to a bare rotor version.


Author(s):  
Satoru Okamoto

A series of wind tunnel tests was conducted on the vibration and scattering behavior of full-sized model of roof tiles, which were used widely for roofings of Japanese wooden dwellings. This study has investigated the nature and source of the vibrating and scattering behavior of roof tiles with the aim of providing a better insight to the mechanism. The roof tiles were set up on the pitched roof in the downstream of the flow from the wind tunnel. The vibrations for the roof tiles were measured by the Laser Doppler Vibrometry and the accelerometer, and the practical natural frequencies of the roof tiles were analyzed by the impulse force hammer test method. The motions of the vibration and scattering were observed by the high-speed video camera. Based on the consideration on the results of the measurements, there is a basic mechanism which can lead to flow-induced vibrations of the roof tiles. This mechanism is similar to that of the so-called fluttering instability, which appears as the self-excited oscillation in the natural mode of the structure at the certain critical flow speed. The values of the frequencies for the oscillating relate to the values of natural frequencies of the vibration.


2020 ◽  
Vol 498 (4) ◽  
pp. 5517-5523
Author(s):  
P Rashed-Mohassel ◽  
M Ghorbanalilu

ABSTRACT Particle acceleration by plasma shock waves is investigated for a magnetized plasma cloud propagating in a non-uniform background magnetic field by means of analytical and numerical calculations. The mechanism studied here is mainly, magnetic trapping acceleration (MTA) which is previously investigated for a cloud moving through the uniform interstellar magnetic field (IMF). In this work, the acceleration is studied for a cloud moving in an antiparallel background field with spatial variations along the direction of motion. For negative variation, the cloud moves towards an antiparallel magnetic field with an increasing intensity, the trapped particle moves to locations with higher convective electric field and therefore gains more energy over time. For positive variation, the background field decreases to zero and changes into a parallel field with an increasing intensity. It is concluded that, when the background field vanishes, the MTA mechanism ceases and the particle escapes into the space. This leads to a bouncing acceleration which further increases energy of the gyrating particle. The two processes are followed by a shock drift acceleration, where due to the background magnetic field gradient, the particle drifts along the electric field and gains energy. Although for positive variation, three different mechanisms are involved, energy gain is less than in the case of a uniform background field.


2015 ◽  
Vol 830-831 ◽  
pp. 505-508 ◽  
Author(s):  
R. Sudheer ◽  
K. Narayan Prabhu

In recent years phase change materials have emerged to be ideal energy storage materials for their higher energy density over sensible heat storing materials. Use of phase change materials (PCM) have been successfully implemented at lower temperature applications with various organic compounds. On the other hand, high temperature applications have been solely dominated by various salts, their eutectics and mixtures as phase change materials. This work discusses the suitability of metals and alloys for thermal energy storage applications as the phase change material. Metals offer superior thermal conductivities with considerable energy density compared to salts. Here, two alloys namely, Sn-0.3Ag-0.7Cu (SAC) solidifying over 212-224°C and ZA8 (Zn-8%Al) solidifying over 378-405°C have been studied. Thermal analysis of PCMs using Computer Aided Cooling Curve Analysis (CA-CCA) and DSC technique were performed to predict the solidification path. In addition to this, Newtonian technique was employed to estimate the latent heat of fusion for these phase change materials. Cooling rate curves and Fraction Solid curves offered a better insight into their ability to receive and discharge heat over the concerned temperature range.


2015 ◽  
Vol 3 (2) ◽  
pp. 123
Author(s):  
Satya Seshavatharam UV ◽  
Terry Tatum E ◽  
Lakshminarayana S

<p>From the beginning of Planck scale to the scale of the current Hubble radius: 1) Considering the relation, subjects of black holes and cosmology, both can be integrated into evolving black hole cosmology and cosmic horizon problem can be relinquished. 2) Considering ‘continuous light speed expansion’ of the cosmic black hole horizon, attributed results of cosmic inflation can be re-addressed completely. If ‘nature’ of the universe is to expand with light speed, then there is no need to think about the existence of currently believed ‘Lambda term’. In addition, ‘light speed expanding cosmic space’ can be called as ‘flat space’. 3) Considering the ratio of gravitational self-energy density and thermal energy density to be  (where  is the Planck scale temperature, and is cosmic temperature at any time). Quantum gravity can be implemented in low energy scale current cosmological observations. Considering the above concepts, currently believed dark matter energy density and visible matter energy density both can be accurately fitted with the ratio of current gravitational self-energy density and current thermal energy density. To proceed further, the authors would like to highlight the following three points: 1) Deep-space red shift non-linearity can be expected to be connected with cosmological gravitational and relativistic effects and cannot be considered as a major criterion of cosmic evolution. 2) Until one finds solid applications of super luminal speeds and super luminal expansions in other areas of physics like astrophysics and nuclear astrophysics, currently believed ‘cosmic inflation’ cannot be considered as a real physical model and alternative proposals of inflation can be given a chance in exploring the evolving history of the universe. 3) Implementing Planck scale in current paradigm of cosmological observations and standard cosmology is very challenging and is inevitable.</p>


Sign in / Sign up

Export Citation Format

Share Document