scholarly journals Alfvén wave interaction with inhomogeneous plasmas: acceleration and energy cascade towards small-scales

2004 ◽  
Vol 22 (6) ◽  
pp. 2081-2096 ◽  
Author(s):  
V. Génot ◽  
P. Louarn ◽  
F. Mottez

Abstract. Investigating the process of electron acceleration in auroral regions, we present a study of the temporal evolution of the interaction of Alfvén waves (AW) with a plasma inhomogeneous in a direction transverse to the static magnetic field. This type of inhomogeneity is typical of the density cavities extended along the magnetic field in auroral acceleration regions. We use self-consistent Particle In Cell (PIC) simulations which are able to reproduce the full nonlinear evolution of the electromagnetic waves, as well as the trajectories of ions and electrons in phase space. Physical processes are studied down to the ion Larmor radius and electron skin depth scales. We show that the AW propagation on sharp density gradients leads to the formation of a significant parallel (to the magnetic field) electric field (E-field). It results from an electric charge separation generated on the density gradients by the polarization drift associated with the time varying AW E-field. Its amplitude may reach a few percents of the AW E-field. This parallel component accelerates electrons up to keV energies over a distance of a few hundred Debye lengths, and induces the formation of electron beams. These beams trigger electrostatic plasma instabilities which evolve toward the formation of nonlinear electrostatic structures (identified as electron holes and double layers). When the electrostatic turbulence is fully developed we show that it reduces the further wave/particle exchange. This sequence of mechanisms is analyzed with the program WHAMP, to identify the instabilities at work and wavelet analysis techniques are used to characterize the regime of energy conversions (from electromagnetic to electrostatic structures, from large to small length scales). This study elucidates a possible scenario to account for the particle acceleration and the wave dissipation in inhomogeneous plasmas. It would consist of successive phases of acceleration along the magnetic field, the development of an electrostatic turbulence, the thermalization and the heating of the plasma. Space plasma physics (charged particle motion and acceleration; numerical studies).

1971 ◽  
Vol 6 (3) ◽  
pp. 495-512 ◽  
Author(s):  
R. W. Landau† ◽  
S. Cuperman

The stability of anisotropic plasmas to the magnetosonic (or right-hand compressional Alfvén) wave, near the ion cyclotron frequency, propagating almost perpendicular to the magnetic field, is investigated. For this case, and for wavelengths larger than the ion Larmor radius and for large ion plasma frequency (w2p+ ≫ Ωp+) the dispersion relation is obtained in a simple form. It is shown that for T # T' (even T ≫ T) no instabifity occurs. The resonant ters are also included, and it is shown that there is no resonant instabifity, only damping.


1982 ◽  
Vol 28 (3) ◽  
pp. 459-468 ◽  
Author(s):  
M. Khanna ◽  
R. Rajaram

It is shown that the asymptotic evolution of a finite-amplitude Alfvén wave propagating parallel to the uniform magnetic field in a warm homogeneous collisionless plasma is governed by the modified nonlinear Schrödinger equation. The dispersion is provided by the ion finite Larmor radius (FLR) effects in the momentum equation and the Hall current and electron pressure corrections to the generalized Ohm's law. In the cold plasma limit the equations reduce to those available in the literature. It is suggested that these calculations can have a bearing on the investigation of the structure of MHD waves in the solar wind.


2021 ◽  
Author(s):  
Aditya Varma ◽  
Binod Sreenivasan

<p>It is known that the columnar structures in rapidly rotating convection are affected by the magnetic field in ways that enhance their helicity. This may explain the dominance of the axial dipole in rotating dynamos. Dynamo simulations starting from a small seed magnetic field have shown that the growth of the field is accompanied by the excitation of convection in the energy-containing length scales. Here, this process is studied by examining axial wave motions in the growth phase of the dynamo for a wide range of thermal forcing. In the early stages of evolution where the field is weak, fast inertial waves weakly modified by the magnetic field are abundantly present. As the field strength(measured by the ratio of the Alfven wave to the inertial wave frequency) exceeds a threshold value, slow magnetostrophic waves are spontaneously generated. The excitation of the slow waves coincides with the generation of helicity through columnar motion, and is followed by the formation of the axial dipole from a chaotic, multipolar state. In strongly driven convection, the slow wave frequency is attenuated, causing weakening of the axial dipole intensity. Kinematic dynamo simulations at the same parameters, where only fast inertial waves are present, fail to produce the axial dipole field. The dipole field in planetary dynamos may thus be supported by the helicity from slow magnetostrophic waves.</p>


2014 ◽  
Vol 32 (10) ◽  
pp. 1207-1216 ◽  
Author(s):  
P. Janhunen

Abstract. Plasma brake is a thin, negatively biased tether that has been proposed as an efficient concept for deorbiting satellites and debris objects from low Earth orbit. We simulate the interaction with the ionospheric plasma ram flow with the plasma-brake tether by a high-performance electrostatic particle in cell code to evaluate the thrust. The tether is assumed to be perpendicular to the flow. We perform runs for different tether voltage, magnetic-field orientation and plasma-ion mass. We show that a simple analytical thrust formula reproduces most of the simulation results well. The interaction with the tether and the plasma flow is laminar (i.e. smooth and not turbulent) when the magnetic field is perpendicular to the tether and the flow. If the magnetic field is parallel to the tether, the behaviour is unstable and thrust is reduced by a modest factor. The case in which the magnetic field is aligned with the flow can also be unstable, but does not result in notable thrust reduction. We also correct an error in an earlier reference. According to the simulations, the predicted thrust of the plasma brake is large enough to make the method promising for low-Earth-orbit (LEO) satellite deorbiting. As a numerical example, we estimate that a 5 km long plasma-brake tether weighing 0.055 kg could produce 0.43 mN breaking force, which is enough to reduce the orbital altitude of a 260 kg object mass by 100 km over 1 year.


2017 ◽  
Vol 83 (4) ◽  
Author(s):  
Gregory G. Howes ◽  
Sofiane Bourouaine

Plasma turbulence occurs ubiquitously in space and astrophysical plasmas, mediating the nonlinear transfer of energy from large-scale electromagnetic fields and plasma flows to small scales at which the energy may be ultimately converted to plasma heat. But plasma turbulence also generically leads to a tangling of the magnetic field that threads through the plasma. The resulting wander of the magnetic field lines may significantly impact a number of important physical processes, including the propagation of cosmic rays and energetic particles, confinement in magnetic fusion devices and the fundamental processes of turbulence, magnetic reconnection and particle acceleration. The various potential impacts of magnetic field line wander are reviewed in detail, and a number of important theoretical considerations are identified that may influence the development and saturation of magnetic field line wander in astrophysical plasma turbulence. The results of nonlinear gyrokinetic simulations of kinetic Alfvén wave turbulence of sub-ion length scales are evaluated to understand the development and saturation of the turbulent magnetic energy spectrum and of the magnetic field line wander. It is found that turbulent space and astrophysical plasmas are generally expected to contain a stochastic magnetic field due to the tangling of the field by strong plasma turbulence. Future work will explore how the saturated magnetic field line wander varies as a function of the amplitude of the plasma turbulence and the ratio of the thermal to magnetic pressure, known as the plasma beta.


2007 ◽  
Vol 25 (1) ◽  
pp. 271-282 ◽  
Author(s):  
R. Smets ◽  
G. Belmont ◽  
D. Delcourt ◽  
L. Rezeau

Abstract. Using hybrid simulations, we examine how particles can diffuse across the Earth's magnetopause because of finite Larmor radius effects. We focus on tangential discontinuities and consider a reversal of the magnetic field that closely models the magnetopause under southward interplanetary magnetic field. When the Larmor radius is on the order of the field reversal thickness, we show that particles can cross the discontinuity. We also show that with a realistic initial shear flow, a Kelvin-Helmholtz instability develops that increases the efficiency of the crossing process. We investigate the distribution functions of the transmitted ions and demonstrate that they are structured according to a D-shape. It accordingly appears that magnetic reconnection at the magnetopause is not the only process that leads to such specific distribution functions. A simple analytical model that describes the built-up of these functions is proposed.


2018 ◽  
Vol 84 (6) ◽  
Author(s):  
K. V. Lezhnin ◽  
F. F. Kamenets ◽  
T. Zh. Esirkepov ◽  
S. V. Bulanov

In contrast to hydrodynamic vortices, vortices in a plasma contain an electric current circulating around the centre of the vortex, which generates a magnetic field localized inside. Using computer simulations, we demonstrate that the magnetic field associated with the vortex gives rise to a mechanism of dissipation of the vortex pair in a collisionless plasma, leading to fast annihilation of the magnetic field with its energy transforming into the energy of fast electrons, secondary vortices and plasma waves. Two major contributors to the energy damping of a double vortex system, namely, magnetic field annihilation and secondary vortex formation, are regulated by the size of the vortex with respect to the electron skin depth, which scales with the electron$\unicode[STIX]{x1D6FE}$factor,$\unicode[STIX]{x1D6FE}_{e}$, as$R/d_{e}\propto \unicode[STIX]{x1D6FE}_{e}^{1/2}$. Magnetic field annihilation appears to be dominant in mildly relativistic vortices, while for the ultrarelativistic case, secondary vortex formation is the main channel for damping of the initial double vortex system.


2007 ◽  
Vol 73 (1) ◽  
pp. 89-115 ◽  
Author(s):  
LARS G. WESTERBERG ◽  
HANS O. ÅKERSTEDT

Abstract.A compressible model of the magnetosheath plasma flow is considered. Magnetic reconnection is assumed to occur in a region stretching from the sub-Solar point to the north. Two locations of the reconnection site are treated: two and four Earth radii from the sub-Solar point, respectively. By treating the transition layer as very thin, we solve the governing equations approximately using the method of matched asymptotic expansions. The behavior of the magnetic field and the plasma velocity close to a reconnection site during the transition from the magnetosheath to the magnetosphere is investigated. We also obtain the development of the transition layer thickness north and south of the reconnection point. The magnetopause transition layer is represented by a large-amplitude Alfvén wave implying that the density is approximately the same across the magnetopause boundary. In order to match the solutions we consider a compressible ideal magnetohydrodynamic model describing density, velocity and magnetic field variations along the outer magnetopause boundary. We also compare the analytical results with solutions from a numerical simulation. The compressible effects on the structure of the magnetic field and the total velocity evolution are visible but not dramatic. It is shown that the transition layer north of the reconnection point is thinner than to the south. The effect is stronger for reconnection at higher latitudes.


2018 ◽  
Vol 16 (6) ◽  
pp. 385-390
Author(s):  
Shikha BINWAL ◽  
Jay K JOSHI ◽  
Shantanu Kumar KARKARI ◽  
Predhiman Krishan KAW ◽  
Lekha NAIR ◽  
...  

A floating emissive probe has been used to obtain the spatial electron temperature (Te) profile in a 13.56 MHz parallel plate capacitive coupled plasma. The effect of an external transverse magnetic field and pressure on the electron temperature profile has been discussed. In the un-magnetised case, the bulk region of the plasma has a uniform Te. Upon application of the magnetic field, the Te profile becomes non-uniform and skewed.  With increase in pressure, there is an overall reduction in electron temperature. The regions adjacent to the electrodes witnessed a higher temperature than the bulk for both cases. The emissive probe results have also been compared with particle-in-cell simulation results for the un-magnetised case.


1987 ◽  
Vol 40 (6) ◽  
pp. 755 ◽  
Author(s):  
AZ Kazbegi ◽  
GZ Machabeli ◽  
G Melikidze

The generation of radio waves in the plasma of the pulsar magnetosphere is considered taking into account the inhomogeneity of the dipole magnetic field. It is shown that the growth rate of the instability of the electromagnetic waves calculated in the non-resonance case turns out to be of the order of 1/ TO (where TO is the time of plasma escape from the light cylinder). However, the generation of electromagnetic waves from a new type Cherenkov resonance is possible, occurring when the particles have transverse velocities caused by the drift due to the inhomogeneity of the magnetic field. Estimates show that the development of this type of instability is possible only for pulsars with ages which exceed 104 yr. We make an attempt to explain some peculiarities of 'typical' pulsar emission on the basis of the model developed.


Sign in / Sign up

Export Citation Format

Share Document