Categoricity regained

1976 ◽  
Vol 41 (3) ◽  
pp. 639-643 ◽  
Author(s):  
Erik Ellentuck

One of the earliest goals of modern logic was to characterize familiar mathematical structures up to isomorphism by means of properties expressed in a first order language. This hope was dashed by Skolem's discovery (cf. [6]) of a nonstandard model of first order arithmetic. A theory T such that any two of its models are isomorphic is called categorical. It is well known that if T has any infinite models then T is not categorical. We shall regain categoricity by(i) enlarging our language so as to allow expressions of infinite length, and(ii) enlarging our class of isomorphisms so as to allow isomorphisms existing in some Boolean valued extension of the universe of sets.Let and be mathematical structures of the same similarity type where say R is binary on A. We write if f is an isomorphism of onto , and if there is an f such that . We say that P is a partial isomorphism of onto and write if P is a nonempty set of functions such that(i) if f ∈ P then dom(f) is a substructure of , rng(/f) is a substructure of , and f is an isomorphism of its domain onto its range, and(ii) if f ∈ P, a ∈ A, and b ∈ B then there exist g,h ∈ P, both extending f such that a ∈ dom(g) and b ∈ rng(h). Write if there is a P such that .

1971 ◽  
Vol 36 (1) ◽  
pp. 129-140 ◽  
Author(s):  
G. Fuhrken ◽  
W. Taylor

A relational structure is called weakly atomic-compact if and only if every set Σ of atomic formulas (taken from the first-order language of the similarity type of augmented by a possibly uncountable set of additional variables as “unknowns”) is satisfiable in whenever every finite subset of Σ is so satisfiable. This notion (as well as some related ones which will be mentioned in §4) was introduced by J. Mycielski as a generalization to model theory of I. Kaplansky's notion of an algebraically compact Abelian group (cf. [5], [7], [1], [8]).


1982 ◽  
Vol 47 (1) ◽  
pp. 187-190 ◽  
Author(s):  
Carl Morgenstern

In this note we investigate an extension of Peano arithmetic which arises from adjoining generalized quantifiers to first-order logic. Markwald [2] first studied the definability properties of L1, the language of first-order arithmetic, L, with the additional quantifer Ux which denotes “there are infinitely many x such that…. Note that Ux is the same thing as the Keisler quantifier Qx in the ℵ0 interpretation.We consider L2, which is L together with the ℵ0 interpretation of the Magidor-Malitz quantifier Q2xy which denotes “there is an infinite set X such that for distinct x, y ∈ X …”. In [1] Magidor and Malitz presented an axiom system for languages which arise from adding Q2 to a first-order language. They proved that the axioms are valid in every regular interpretation, and, assuming ◊ω1, that the axioms are complete in the ℵ1 interpretation.If we let denote Peano arithmetic in L2 with induction for L2 formulas and the Magidor-Malitz axioms as logical axioms, we show that in we can give a truth definition for first-order Peano arithmetic, . Consequently we can prove in that is Πn sound for every n, thus in we can prove the Paris-Harrington combinatorial principle and the higher-order analogues due to Schlipf.


1983 ◽  
Vol 48 (4) ◽  
pp. 1013-1034
Author(s):  
Piergiorgio Odifreddi

We conclude here the treatment of forcing in recursion theory begun in Part I and continued in Part II of [31]. The numbering of sections is the continuation of the numbering of the first two parts. The bibliography is independent.In Part I our language was a first-order language: the only set we considered was the (set constant for the) generic set. In Part II a second-order language was introduced, and we had to interpret the second-order variables in some way. What we did was to consider the ramified analytic hierarchy, defined by induction as:A0 = {X ⊆ ω: X is arithmetic},Aα+1 = {X ⊆ ω: X is definable (in 2nd order arithmetic) over Aα},Aλ = ⋃α<λAα (λ limit),RA = ⋃αAα.We then used (a relativized version of) the fact that (Kleene [27]). The definition of RA is obviously modeled on the definition of the constructible hierarchy introduced by Gödel [14]. For this we no longer work in a language for second-order arithmetic, but in a language for (first-order) set theory with membership as the only nonlogical relation:L0 = ⊘,Lα+1 = {X: X is (first-order) definable over Lα},Lλ = ⋃α<λLα (λ limit),L = ⋃αLα.


1986 ◽  
Vol 51 (3) ◽  
pp. 732-747
Author(s):  
T. G. McLaughlin

By a “partly numerical structure” (p.n.s.) we shall here mean a quadruple , where M is a set, ω = the natural numbers, ω ⊆ M, and are disjoint sets, is a set of relations (of various positive integral arities) on M, and is a set of functions (of various positive integral arities) with arguments and values in M. Thus, in calculated disharmony with common practice, we do not (except as noted below, in connection with naming the elements of ω) fix a similarity type as part of our notion of a “structure”. Suppose a finitary first-order language (with identity) has been specified, with constant symbols , n ∈ ω, and with exactly enough relation and function symbols of each arity to enable us to interpret in . We wish to consider the variation in the degree (relative to a fixed Gödel-numbering of ) of the complete -theory of as we vary the way in which elements of ∪ are assigned as interpretations to the relation and function symbols of . We shall in fact, therefore, be concerned exclusively with p.n.s.'s for which ∪ is countable. More: we assume to be such that we can effectively tell, uniformly in n > 0, exactly how many n-ary relations has and exactly how many n-ary functions has.


1982 ◽  
Vol 34 (1) ◽  
pp. 80-90 ◽  
Author(s):  
Paul Bankston

0. Introduction. Functors form an equivalence of categories (see [8,]) if Γ(Φ(A)) ≅ A and Φ (Γ(B)) ≅ B naturally for all objects A from and B from . Letting denote the opposite of we say that and are dual if there is an equivalence between and .Let τ be a similarity type of finitary operation symbols. We let Lτ denote the first order language (with equality) using nonlogical symbols from τ, and consider the class of all algebras of type τ as a category by declaring the morphisms to be all homomorphisms in the usual sense (i.e., those functions preserving the atomic sentences of Lτ). If is a class in (i.e., and is closed under isomorphism), we view as a full subcategory of , and we define the order of to be the number of symbols occurring in τ.


1976 ◽  
Vol 41 (1) ◽  
pp. 121-138
Author(s):  
Krzysztof Rafal Apt

This paper is devoted to the study of the infinitistic rules of proof i.e. those which admit an infinite number of premises. The best known of these rules is the ω-rule. Some properties of the ω-rule and its connection with the ω-models on the basis of the ω-completeness theorem gave impulse to the development of the theory of models for admissible fragments of the language . On the other hand the study of representability in second order arithmetic with the ω-rule added revealed for the first time an analogy between the notions of re-cursivity and hyperarithmeticity which had an important influence on the further development of generalized recursion theory.The consideration of the subject of infinitistic rules in complete generality seems to be reasonable for several reasons. It is not completely clear which properties of the ω-rule were essential for the development of the above-mentioned topics. It is also worthwhile to examine the proof power of infinitistic rules of proof and what distinguishes them from finitistic rules of proof.What seemed to us the appropriate point of view on this problem was the examination of the connection between the semantics and the syntax of the first order language equipped with an additional rule of proof.


1978 ◽  
Vol 43 (1) ◽  
pp. 23-44 ◽  
Author(s):  
Nicolas D. Goodman

In this paper we introduce a new notion of realizability for intuitionistic arithmetic in all finite types. The notion seems to us to capture some of the intuition underlying both the recursive realizability of Kjeene [5] and the semantics of Kripke [7]. After some preliminaries of a syntactic and recursion-theoretic character in §1, we motivate and define our notion of realizability in §2. In §3 we prove a soundness theorem, and in §4 we apply that theorem to obtain new information about provability in some extensions of intuitionistic arithmetic in all finite types. In §5 we consider a special case of our general notion and prove a kind of reflection theorem for it. Finally, in §6, we consider a formalized version of our realizability notion and use it to give a new proof of the conservative extension theorem discussed in Goodman and Myhill [4] and proved in our [3]. (Apparently, a form of this result is also proved in Mine [13]. We have not seen this paper, but are relying on [12].) As a corollary, we obtain the following somewhat strengthened result: Let Σ be any extension of first-order intuitionistic arithmetic (HA) formalized in the language of HA. Let Σω be the theory obtained from Σ by adding functionals of finite type with intuitionistic logic, intensional identity, and axioms of choice and dependent choice at all types. Then Σω is a conservative extension of Σ. An interesting example of this theorem is obtained by taking Σ to be classical first-order arithmetic.


2001 ◽  
Vol 7 (4) ◽  
pp. 441-484 ◽  
Author(s):  
José Ferreirós

AbstractThis paper aims to outline an analysis and interpretation of the process that led to First-Order Logic and its consolidation as a core system of modern logic. We begin with an historical overview of landmarks along the road to modern logic, and proceed to a philosophical discussion casting doubt on the possibility of a purely rational justification of the actual delimitation of First-Order Logic. On this basis, we advance the thesis that a certain historical tradition was essential to the emergence of modern logic; this traditional context is analyzed as consisting in some guiding principles and, particularly, a set of exemplars (i.e., paradigmatic instances). Then, we proceed to interpret the historical course of development reviewed in section 1, which can broadly be described as a two-phased movement of expansion and then restriction of the scope of logical theory. We shall try to pinpoint ambivalencies in the process, and the main motives for subsequent changes. Among the latter, one may emphasize the spirit of modern axiomatics, the situation of foundational insecurity in the 1920s, the resulting desire to find systems well-behaved from a proof-theoretical point of view, and the metatheoretical results of the 1930s. Not surprisingly, the mathematical and, more specifically, the foundational context in which First-Order Logic matured will be seen to have played a primary role in its shaping.Mathematical logic is what logic, through twenty-five centuries and a few transformations, has become today. (Jean van Heijenoort)


1962 ◽  
Vol 27 (1) ◽  
pp. 58-72 ◽  
Author(s):  
Timothy Smiley

Anyone who reads Aristotle, knowing something about modern logic and nothing about its history, must ask himself why the syllogistic cannot be translated as it stands into the logic of quantification. It is now more than twenty years since the invention of the requisite framework, the logic of many-sorted quantification.In the familiar first-order predicate logic generality is expressed by means of variables and quantifiers, and each interpretation of the system is based upon the choice of some class over which the variables may range, the only restriction placed on this ‘domain of individuals’ being that it should not be empty.


2016 ◽  
Vol 81 (3) ◽  
pp. 951-971
Author(s):  
NADAV MEIR

AbstractWe say a structure ${\cal M}$ in a first-order language ${\cal L}$ is indivisible if for every coloring of its universe in two colors, there is a monochromatic substructure ${\cal M}\prime \subseteq {\cal M}$ such that ${\cal M}\prime \cong {\cal M}$. Additionally, we say that ${\cal M}$ is symmetrically indivisible if ${\cal M}\prime$ can be chosen to be symmetrically embedded in ${\cal M}$ (that is, every automorphism of ${\cal M}\prime$ can be extended to an automorphism of ${\cal M}$). Similarly, we say that ${\cal M}$ is elementarily indivisible if ${\cal M}\prime$ can be chosen to be an elementary substructure. We define new products of structures in a relational language. We use these products to give recipes for construction of elementarily indivisible structures which are not transitive and elementarily indivisible structures which are not symmetrically indivisible, answering two questions presented by A. Hasson, M. Kojman, and A. Onshuus.


Sign in / Sign up

Export Citation Format

Share Document