Development and characterization of fungal specific microsatellite markers in the lichenLobarina scrobiculata(Lobariaceae, Ascomycota)

2015 ◽  
Vol 47 (3) ◽  
pp. 183-186 ◽  
Author(s):  
Maria Prieto ◽  
Lidia Romera ◽  
Sonia Merinero ◽  
Gregorio Aragón ◽  
Isabel Martínez

AbstractLobarina scrobiculata(better known asLobaria scrobiculata) is a widespread lichen, threatened and Red-Listed in various European countries. Microsatellite markers for the mycobiont ofL. scrobiculatawere developed in order to investigate its genetic diversity in the Iberian Peninsula and Europe and to design effective conservation strategies. A total of 7 polymorphic markers were isolated and characterized. These microsatellites were tested in natural populations found in the Iberian Peninsula. The number of observed alleles ranged from 3 to 8, and the Nei's unbiased gene diversity from 0·26 to 0·59. These microsatellite markers are the first to be developed forL. scrobiculataand they will be useful for population studies and for the assessment of the conservation status of this species.

2021 ◽  
pp. 1-4
Author(s):  
Yu-Wei Tseng ◽  
Chi-Chun Huang ◽  
Chih-Chiang Wang ◽  
Chiuan-Yu Li ◽  
Kuo-Hsiang Hung

Abstract Epilobium belongs to the family Onagraceae, which consists of approximately 200 species distributed worldwide, and some species have been used as medicinal plants. Epilobium nankotaizanense is an endemic and endangered herb that grows in the high mountains in Taiwan at an elevation of more than 3300 m. Alpine herbs are severely threatened by climate change, which leads to a reduction in their habitats and population sizes. However, only a few studies have addressed genetic diversity and population genetics. In the present study, we developed a new set of microsatellite markers for E. nankotaizanense using high-throughput genome sequencing data. Twenty polymorphic microsatellite markers were developed and tested on 30 individuals collected from three natural populations. These loci were successfully amplified, and polymorphisms were observed in E. nankotaizanense. The number of alleles per locus (A) ranged from 2.000 to 3.000, and the observed (Ho) and expected (He) heterozygosities ranged from 0.000 to 0.929 and from 0.034 to 0.631, respectively. The developed polymorphic microsatellite markers will be useful in future conservation genetic studies of E. nankotaizanense as well as for developing an effective conservation strategy for this species and facilitating germplasm collections and sustainable utilization of other Epilobium species.


2012 ◽  
Vol 4 (4) ◽  
pp. 951-954 ◽  
Author(s):  
Yoshimi Shinmura ◽  
Alison K. S. Wee ◽  
Koji Takayama ◽  
Sankararamasubramanian Halasya Meenakshisundaram ◽  
Takeshi Asakawa ◽  
...  

Parasitology ◽  
2002 ◽  
Vol 125 (7) ◽  
pp. S51-S59 ◽  
Author(s):  
J. CURTIS ◽  
R. E. SORENSEN ◽  
D. J. MINCHELLA

Blood flukes in the genus Schistosoma are important human parasites in tropical regions. A substantial amount of genetic diversity has been described in populations of these parasites using molecular markers. We first consider the extent of genetic variation found in Schistosoma mansoni and some factors that may be contributing to this variation. Recently, though, attempts have been made to analyze not only the genetic diversity but how that diversity is partitioned within natural populations of schistosomes. Studies with non-allelic molecular markers (e.g. RAPDs and mtVNTRs) have indicated that schistosome populations exhibit varying levels of gene flow among component subpopulations. The recent characterization of microsatellite markers for S. mansoni provided an opportunity to study schistosome population structure within a population of schistosomes from a single Brazilian village using allelic markers. Whereas the detection of population structure depends strongly on the type of analysis with a mitochondrial marker, analyses with a set of seven microsatellite loci consistently revealed moderate genetic differentiation when village boroughs were used to define parasite subpopulations and greater subdivision when human hosts defined subpopulations. Finally, we discuss the implications that such strong population structure might have on schistosome epidemiology.


Dendrobiology ◽  
2021 ◽  
pp. 105-116
Author(s):  
Łukasz Walas ◽  
Grzegorz Iszkuło ◽  
Zoltan Barina ◽  
Monika Dering

New nuclear microsatellite markers (SSRs) were developed for Aesculus hippocastanum, a relict tree species from the Balkan Peninsula. The development of microsatellites was done using the Illumina MiSeq PE300 platform. Out of a set of 500 SSRs designed, a subset of 13 loci was tested using 290 individ­uals from seven natural populations. Twelve species-specific loci were polymorphic. The number of alleles per locus ranged from 2 to 17 and expected heterozygosity from 0.089 to 0.800 with a mean value of 0.484. The population of Kalampaka had the lowest value of allelic richness (2.63) and gene diversity in compari­son to the remaining populations. STRUCTURE analysis confirmed isolation of population Mariolata from the southern edge of the species range and genetic similarity among populations from the Pindos Mts. Ad­ditionally, the utility of new SSRs in 29 individuals from nine other Aesculus taxa was tested. Eleven markers gave polymorphic products for all tested species. For 24 individuals, a high-quality product was obtained for each marker. Results confirmed the utility of specific markers for future population genetics studies.


2005 ◽  
Vol 130 (2) ◽  
pp. 181-190 ◽  
Author(s):  
R.J. Schnell ◽  
C.T. Olano ◽  
J.S. Brown ◽  
A.W. Meerow ◽  
C. Cervantes-Martinez ◽  
...  

Commercial production of cacao in Hawaii is increasing, and this trend is expected to continue over the next several years. The increased acreages are being planted with seedlings from introduced and uncharacterized cacao populations from at least three initial introductions of cacao into the islands. Productive seedlings have been selected from a planting at Waialua, Oahu. The parents of these selections were believed to be the population at the Hawaii Agriculture Research Center (HARC) at Kunia; however, potential parental populations also exist at Univ. of Hawaii research stations at Waimanalo and Malama Ki. Using microsatellite markers, we analyzed the potential parental populations to identify the parents and determine the genetic background for 99 productive and 50 unproductive seedlings from the Waialua site. Based on 19 polymorphic microsatellite loci the parental population was identified as trees from Waimanalo and not trees from Malama Ki or Kunia. The Kunia and Malama Ki populations were very similar with low allelic diversity (A = 1.92) and low unbiased gene diversity (Hnb) of 0.311 and 0.329, respectively, and were determined to be Trinitario in type. The Waimanalo, productive seedling, and unproductive seedling populations had much higher levels of genetic diversity with Hnb of 0.699, 0.686, and 0.686, respectively, and were determined to be upper Amazon Forastero hybridized with Trinitario in type. An additional 46 microsatellite markers were amplified and analyzed in the Waimanalo parents, productive, and unproductive seedlings for a total of 65 loci. Seventeen loci contained alleles that were significantly associated with productive seedlings as determined by Armitage's trend test. Of these, 13 loci (76.4%) co-located with previously reported quantitative trait loci for productivity traits. These markers may prove useful for marker assisted selection and demonstrate the potential of association genetic studies in perennial tree crops such as cacao.


2021 ◽  
Vol 53 (6) ◽  
pp. 457-465
Author(s):  
Silke Werth ◽  
Stefán Þór Pálsson ◽  
Ólafur S. Andrésson

AbstractTo facilitate population-genetic studies, we developed simple sequence repeat (SSR) markers and a molecular species identification assay for Peltigera membranacea (Ascomycota, Peltigerales), a common ground-dwelling lichen of forest and tundra ecosystems. Additional markers were developed for its Nostoc photobiont. Twenty-one fungal markers for P. membranacea were found to be polymorphic, with the number of alleles ranging from 3–21. Nei's unbiased gene diversity ranged from 0.588 to 0.640 in four significantly structured (FST = 0.059) mycobiont populations. For the Nostoc photobiont, 14 polymorphic SSR were developed, yielding 4–14 alleles each, with gene diversity ranging from 0.062 to 0.771 in four populations showing substantial population structure (FST = 0.278). The new markers developed are suitable for population genetic studies of Peltigera membranacea and of its cyanobiont, and at the same time allowed us to distinguish 98.5% of P. membranacea specimens from morphologically similar species of Peltigera.


2012 ◽  
Vol 4 (3) ◽  
pp. 583-586 ◽  
Author(s):  
Mauro André Damasceno Melo ◽  
Adam Rick Bessa da Silva ◽  
Eduardo Sousa Varela ◽  
Iracilda Sampaio ◽  
Claudia Helena Tagliaro

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Iderbat Damba ◽  
Junjian Zhang ◽  
Kunpeng Yi ◽  
Huashan Dou ◽  
Nyambayar Batbayar ◽  
...  

Abstract Background The Swan Goose (Anser cygnoides) breeds across Mongolia and adjacent China and Russia and winters exclusively in China. It is globally threatened, showing long-term major range contractions and declining abundance, linked to habitat loss and degradation. We remain ignorant about the biogeographical subpopulation structure of the species and potential differences in their migration timing, stopovers and schedules, information that could be vital to effective conservation of different elements of the species population, which we address here with results from a telemetry study. Methods In 2017–2018, we attached GPS/GSM telemetry devices to 238 Swan Geese on moulting sites in three discrete parts of their summering area (Dauria International Protected Area, Central Mongolia and Western Mongolia), generating 104 complete spring and autumn migration episodes to compare migration speed and nature between birds of different summer provenances. Results Birds from all three breeding areas used almost completely separate migration routes to winter sympatrically in the Yangtze River floodplain. Although many features of the spring and autumn migrations of the three groups were similar, despite the significantly longer migration routes taken by Western Mongolian tagged birds, birds from Dauria Region arrived significantly later in winter due to prolonged staging in coastal areas and took longer to reach their breeding areas in spring. Among birds of all breeding provenances, spring migration was approximately twice as fast as autumn migration. Areas used by staging Swan Geese (mainly wetlands) in autumn and spring almost never fell within national level protected areas, suggesting major site safeguard is necessary to protect these critical areas. Conclusions This study showed the discreteness of migration routes taken by birds of different summer provenances and differences in their migratory patterns, highlighting key staging areas (Yalu River Estuary in China/North Korea for Dauria Region breeding birds, Daihai Lake for Central Mongolian and Ordos Basin for Western Mongolian birds). Based on this new knowledge of the biogeographical subpopulation structure of the Swan Goose, we need to combine data on subpopulation size, their distribution throughout the annual life cycle and conservation status, to develop more effective conservation strategies and measures to reverse population decline throughout the range.


Genetics ◽  
1996 ◽  
Vol 142 (4) ◽  
pp. 1237-1247 ◽  
Author(s):  
Frédérique Viard ◽  
Philippe Bremond ◽  
Rabiou Labbo ◽  
Fabienne Justy ◽  
Bernard Delay ◽  
...  

Abstract Hermaphrodite tropical freshwater snails provide a good opportunity to study the effects of mating system and genetic drift on population genetic structure because they are self-fertile and they occupy transient patchily distributed habitats (ponds). Up to now the lack of detectable allozyme polymorphism prevented any intrapopulation studies. In this paper, we examine the consequences of selfing and bottlenecks on genetic polymorphism using microsatellite markers in 14 natural populations (under a hierarchical sampling design) of the hermaphrodite freshwater snail Bulinus truncatus. These population genetics data allowed us to discuss the currently available mutation models for microsatellite sequences. Microsatellite markers revealed an unexpectedly high levels of genetic variation with ≤41 alleles for one locus and gene diversity of 0.20–0.75 among populations. The values of any estimator of F  is, indicate high selfing rates in all populations. Linkage disequilibria observed at all loci for some populations may also indicate high levels of inbreeding. The large extent of genetic differentiation measured by F  st, R  st or by a test for homogeneity between genic distributions is explained by both selfing and bottlenecks. Despite a limited gene flow, migration events could be detected when comparing different populations within ponds.


Sign in / Sign up

Export Citation Format

Share Document