scholarly journals The determination of ammonia and total ionic inorganic nitrogen in sea water

Author(s):  
J. P. Riley ◽  
P. Sinhaseni

Microdiffusion using a Cavett flask has been employed instead of vacuum distillation for the separation of ammonia from sea water; diffusion is approximately 75% complete after 24 h at 70°C. The recovered ammonia is determined by a modification of the phenate-hypochlorite method.Raney nickel in the presence of ethylenediamine-tetraacetic acid has been used for the reduction of nitrate and nitrite to ammonia. The latter is separated by microdiffusion and determined colorimetrically. The method showed a coefficient of variation of 2·5% on a sample of sea water containingNo interference was encountered from a variety of organic nitrogen compounds.

Author(s):  
H. W. Harvey

A bio-assay of the nitrogen which was available to two phytoplankton species with their associated bacteria in an off-shore water is described.The concentrations found by assay (11·5 and 13μg N/1.) were similar to the concentration of total inorganic nitrogen compounds found by analysis (10μg N/1.).Of the organic nitrogen normally present in solution in sea water, an insignificant quantity appears to be available to the plant-bacteria community.


Author(s):  
F. A. J. Armstrong ◽  
E. I. Butler

Analyses of sea water collected during 1957 at the International Hydrographic Station E1 (lat. 50° 02′ N., long 4° 22′ W.) are given here in the same form as in earlier reports (Armstrong, 1954, 1955, I957> 1958). The methods of collection and of analysis for phosphorus and silicon are substantially unchanged. Some analyses were made for ammonia by a vacuum distillation method (Riley, 1953), and for inorganic nitrogen (nitrate + nitrite + ammonia) by reduction of nitrate and nitrite with nickel (Riley & Sinhaseni, 1957) to ammonia, which was vacuum distilled. Salinities were determined by the Government Chemist's Department.We wish to express our thanks to Lt.-Cdr. C. A. Hoodless and the crew of R.V. ‘Sarsia’ and to Capt. W. J. Creese and the crew of R.V. ‘Sula’, for assistance at sea.


2018 ◽  
Vol 31 ◽  
pp. 04004
Author(s):  
Gitta Agnes Putri ◽  
Sunarsih

This paper presents about the dynamic modeling of the Water Lettuce ponds as a form of improvement from the Water Hyacinth ponds. The purpose of this paper is to predict nitrogen decrease and nitrogen transformation in Water Lettuce ponds integrated with Waste Stabilization Ponds. The model consists of 4 mass balances, namely Dissolved Organic Nitrogen (DON), Particulate Organic Nitrogen (PON), ammonium (NH4+), Nitrate and Nitrite (NOx). The process of nitrogen transformation which considered in a Water Lettuce ponds, namely hydrolysis, mineralization, nitrification, denitrification, plant and bacterial uptake processes. Numerical simulations are performed by giving the values of parameters and the initial values of nitrogen compounds based on a review of previous studies. Numerical results show that the rate of change in the concentration of nitrogen compounds in the integration ponds of waste stabilization and water lettuce decreases and reaches stable at different times.


1971 ◽  
Vol 178 (1050) ◽  
pp. 111-129 ◽  

When symbiotic coelenterates, especially hermatypic corals, were incubated in the light in sea water containing NaH 14 CO 3 , small quantities of fixed 14 C were released from the tissues at a steady rate over 4 h. The rate of release was greatly increased in the presence of glycerol, glucose and alanine; the additional 14 C released was in the same substance as that added to the medium. The following related compounds had little or no effect on 14 C release : ethylene glycol, sorbose, fructose, glucosamine, glycine, proline, serine and glutamic acid. Such results have been previously reported in other symbiotic systems, and the substances causing the specific release of fixed 14 C are believed to be those which move from the autotrophic to the heterotrophic symbiont. This belief is supported here by previous observations that glycerol, glucose and alanine are among the most important organic substances released by freshly isolated zooxanthellae. Ammonium chloride increased the amount of fixed 14 C released by corals into alanine media, possibly due to conversion of ammonia to amino acids by zooxanthellae. Appreciable release of 14 C fixed in the dark also occurred into alanine solutions. These results suggest possible roles of zooxanthellae in supplying organic nitrogen compounds to the host cell at night as well as during the day. The involvement of zooxanthellae in ‘recycling’ nitrogen compounds within the association may help to explain the success of corals in seas poor in nutrients. There was substantial utilization of external glycerol and glucose when supplied at either high or low concentrations. Corals may well be able to utilize some of the small amounts of organic matter dissolved in sea water in the natural environment.


1965 ◽  
Vol 48 (6) ◽  
pp. 1111-1115
Author(s):  
W G Burch ◽  
J A Brabson

Abstract With a Raney catalyst powder containing 10% Co, 40%; Ni, and 50% Al, nitrates are reduced to ammonia in 8N sulfuric acid in 10 minutes. Neither chlorides nor organic nitrogen compounds interfere with the reduction, and the reduction passed Youden’s ruggedness test. Results of analyses of fertilizers for total nitrogen that included reduction with the powder were in good agreement with those of accepted methods.


2017 ◽  
Vol 2 (4) ◽  
pp. 67-83 ◽  
Author(s):  
L. I. Ryabushko ◽  
N. V. Pospelova ◽  
D. S. Balycheva ◽  
N. P. Kovrigina ◽  
O. A. Troshchenko ◽  
...  

In mollusk cultivation areas large amount of biomass and metabolites is accumulated. For this reason, biological monitoring in the farming areas, which includes study of microalgae as environmental quality indicators, is of considerable importance. Samples of mussels harvested from collectors at 6 m depth over the period February 2015 – March 2016 have been utilized for studying epizoon microalgae residing on mollusk shells. At the same time, sea water at depths of 0 and 6 m was sampled for determining phytoplankton and hydrochemical parameters of environment in the mussel-and-oyster farm area. Dissolved oxygen, biological oxygen demand after five days of incubation in the dark (BOD5), alkaline permanganate oxidizability, silicates, organic and inorganic forms of nitrogen and phosphorus have been quantified in the water samples using conventional methods. In the epizoon of the mussel shells, 108 taxa of microalgae of four phyla have been identified: 3 species of Сyanoprokaryota, 6 of Dinophyta, 6 of Haptophyta and 93 of Bacillariophyta. The maximum values of the species richness (26) and abundance of microalgae were observed in February (74,78·103 cells·cm-2, t = 9,7 °C) and April 2015 (62,0·103 cells·cm-2, t = 10,3 °C), as well as in January 2016 (65,1·103 cells·cm-2, t = 9,5 °C). The highest biomass was registered in August (0,272 mg·cm-2, t = 25,5 °C). The main contribution to the total abundance was made by the diatoms Tabularia fasciculata while Navicula ramosissima, and cyanobacteria were prevalent in the total biomass. In phytoplankton at the depths of 0 and 6 m, 135 taxa belonging to eight phyla have been found: 2 species of Cyanoprokaryota, 47 of Acillariophyta, 57 of Inophyta, 17 of Haptophyta, 5 of Chlorophyta, 2 of Euglenophyta, 3 of Cryptophyta and 2 of Chrysophyta. The genus Chaetoceros dominated by the number of diatoms species (18). In terms of abundance and biomass, the dinoflagellate Prorocentrum micans and haptophyte Emiliania huxleyi were dominant. The maximum abundance (370·107 cells·m-3) and biomass (7560 mg·m-3) of the phytoplankton were observed in spring and autumn. In total, 213 of microalgae taxa have been identified in the phytoplankton and mussel shell epizoon, with 30 ones being common for both. Furthermore, 26 potentially toxic species and 24 indicator species have been determined, among which 26 ones are betamesosaprobionts, the indicators of moderate level of water pollution. Thermohaline characteristics of water in the mollusk farm area did not exceed those of the long-term observations. At all horizons, the oxygen content was at the level of 93–125 % of saturation. The sea water oxidizability did not exceed the maximum permissible level established by fishery standards. The concentration of nutrients was high with a large fluctuation range, which indicates anthropogenic impact on the water area. The values of the total inorganic nitrogen-to-phosphorus and silicon-to-phosphorus ratios suggested nitrogen and silicon limitations for the microalgae community development from July to December. The mussel epizoon microalgae abundance strongly correlated with water temperature and dissolved oxygen, and a strong correlation of the biomass with inorganic phosphorus was observed, too. Moderate correlations were also found with inorganic phosphorus and organic nitrogen. For the phytoplankton, moderate correlations of abundance with hydrological and hydrochemical characteristics were identified: with nitrates in the surface layer and with temperature, dissolved oxygen, and organic nitrogen in the subsurface water layer. The phytoplankton biomass moderately correlated with the silicate concentration. The hydrological and hydrochemical structure of sea water, especially in the mollusk farming areas, affected species composition and quantitative characteristics of planktonic and benthic microalgae communities.


2019 ◽  
Vol 148 ◽  
pp. 66-72 ◽  
Author(s):  
Meryene de C. Teixeira ◽  
Fabiana S. Felix ◽  
Sérgio S. Thomasi ◽  
Zuy M. Magriotis ◽  
Josiane M. da Silva ◽  
...  

2012 ◽  
Vol 9 (6) ◽  
pp. 529 ◽  
Author(s):  
Daniel Graeber ◽  
Björn Gücker ◽  
Elke Zwirnmann ◽  
Brian Kronvang ◽  
Christoph Weih ◽  
...  

Environmental context Aquatic ecosystem health may be adversely affected by dissolved organic nitrogen pollution, and accurate analytical techniques are needed to assess these effects. Our study shows that dialysis is the best sample pre-treatment technique to increase the accuracy of dissolved organic nitrogen determination. It will improve analysis and understanding of the role of dissolved organic nitrogen in the nitrogen cycle of affected aquatic ecosystems. Abstract Dissolved organic nitrogen (DON) is usually determined as the difference between total dissolved nitrogen (TDN) and dissolved inorganic nitrogen (DIN). When applying this approach to samples with high DIN concentrations, there is a risk that small relative errors in TDN and DIN measurements may propagate into high absolute errors of the determined DON concentration. To reduce such errors, two pre-treatment methods have been suggested for the removal of DIN before the determination of DON: anion-exchange pre-treatment (AEP) and dialysis pre-treatment (DP). In this study, we tested the suitability of AEP and DP for DIN removal in order to increase the accuracy of DON determination of freshwater samples. The AEP performed well for standard compounds, yielding high dissolved organic carbon (DOC) recovery rates and >99 % removal of nitrate, whereas DON recovery rates varied and no removal occurred for ammonium and nitrite. However, AEP proved not to be suitable for natural samples, as it removed 36–74 % DOC and up to 83 % DON. In contrast, after 72 h of DP, 17–32 % DOC and DON had been removed from the natural samples, whereas >98 % nitrate was removed in all but one case, and >87 % of the ammonium and nitrite were removed. Moreover, we found that DP results in a significant increase in DON determination accuracy. In conclusion, DP is a useful measure to increase DON determination accuracy in natural freshwater samples with high DIN-to-TDN ratios, whereas AEP is not recommended for DON determination of natural freshwater samples.


Sign in / Sign up

Export Citation Format

Share Document