scholarly journals Progression of obesity-induced insulin resistance in response to a high-fat diet is delayed in IL-1 receptor type I-knock-out mice

2008 ◽  
Vol 67 (OCE7) ◽  
Author(s):  
M. Claessens ◽  
E. Oliver ◽  
K. Harford ◽  
K. H. G. Mills ◽  
H. M. Roche
2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Geum-Hwa Lee ◽  
Kyoung-Jin Oh ◽  
Hyung-Ryong Kim ◽  
Hye-Sook Han ◽  
Hwa-Young Lee ◽  
...  

Abstract Diet-induced obesity is a major contributing factor to the progression of hepatic insulin resistance. Increased free fatty acids in liver enhances endoplasmic reticulum (ER) stress and production of reactive oxygen species (ROS), both are directly responsible for dysregulation of hepatic insulin signaling. BI-1, a recently studied ER stress regulator, was examined to investigate its association with ER stress and ROS in insulin resistance models. To induce obesity and insulin resistance, BI-1 wild type and BI-1 knock-out mice were fed a high-fat diet for 8 weeks. The BI-1 knock-out mice had hyperglycemia, was associated with impaired glucose and insulin tolerance under high-fat diet conditions. Increased activity of NADPH-dependent CYP reductase-associated cytochrome p450 2E1 (CYP2E1) and exacerbation of ER stress in the livers of BI-1 knock-out mice was also observed. Conversely, stable expression of BI-1 in HepG2 hepatocytes was shown to reduce palmitate-induced ER stress and CYP2E1-dependent ROS production, resulting in the preservation of intact insulin signaling. Stable expression of CYP2E1 led to increased ROS production and dysregulation of insulin signaling in hepatic cells, mimicking palmitate-mediated hepatic insulin resistance. We propose that BI-1 protects against obesity-induced hepatic insulin resistance by regulating CYP2E1 activity and ROS production.


2009 ◽  
Vol 68 (OCE2) ◽  
Author(s):  
E. Oliver ◽  
M. Claessens ◽  
K. Harford ◽  
C. Reynolds ◽  
K. H. G. Mills ◽  
...  

Author(s):  
Satoru Ato ◽  
Takahiro Mori ◽  
Yuki Fujita ◽  
Taiga Mishima ◽  
Riki Ogasawara

Chronic obesity and insulin resistance are considered to inhibit contraction-induced muscle hypertrophy, through impairment of mTORC1 and muscle protein synthesis (MPS). A high-fat diet is known to rapidly induce obesity and insulin resistance within a month. However, the influence of a short-term high-fat diet on the response of mTORC1 activation and MPS to acute resistance exercise (RE) is unclear. Thus, the purpose of this study was to investigate the effect of a short-term high-fat diet on the response of mTORC1 activation and MPS to acute RE. Male Sprague-Dawley rats were randomly assigned to groups and fed a normal diet (ND), high-fat diet (HFD 4wk), or pair feed (PF 4wk) for 4 weeks. After dietary habituation, acute RE was performed on the gastrocnemius muscle via percutaneous electrical stimulation. The results showed that 4 weeks of a high fat-diet induced intramuscular lipid accumulation and insulin resistance, without affecting basal mTORC1 activity or MPS. The response of RE-induced mTORC1 activation and MPS was not altered by a high-fat diet. On the other hand, analysis of each fiber type demonstrated that response of MPS to an acute RE was disappeared specifically in type I and IIa fiber. These results indicate that a short-term high-fat diet causes anabolic resistance to acute RE, depending on the fiber type.


2018 ◽  
Vol 32 (S1) ◽  
Author(s):  
Leah Solberg Woods ◽  
Katie Holl ◽  
Hong He ◽  
Sarah DeBehnke ◽  
Chay Teng Yeo ◽  
...  

2021 ◽  
Author(s):  
Jithu Varghese James ◽  
Joe Varghese ◽  
Nikhitha Mariya John ◽  
Jean Christophe Deschemin ◽  
Sophie Vaulont ◽  
...  

Increased body iron stores and inflammation in adipose tissue have been implicated in the pathogenesis of insulin resistance (IR) and type 2 diabetes mellitus. However, the underlying basis of these associations are unclear. In order to assess this, we studied how IR and associated inflammation in adipose tissue developed in the presence of increased body iron stores. Male hepcidin knock-out (Hamp1-/-) mice, which have increased body iron stores, and wild-type (WT) mice were fed a high-fat diet (HFD) for 12 and 24 weeks. Development of IR and metabolic parameters linked to this, insulin signaling in tissue, and inflammation and iron-related parameters in visceral adipose tissue were studied in these animals. HFD-feeding resulted in impaired glucose tolerance in both genotypes of mice. In response to the HFD for 24 weeks, Hamp1-/- mice gained less body weight and developed less IR than corresponding WT mice. This was associated with less lipid accumulation in the liver and decreased inflammation and lipolysis in the adipose tissue in the knock-out mice, than in the WT animals. Fewer macrophages infiltrated the adipose tissue in the knockout mice than in wild-type mice, with these macrophages exhibiting a predominantly anti-inflammatory (M2-like) phenotype. These observations suggest a novel role of hepcidin (central regulator of systemic iron homeostasis) in the development of inflammation in adipose tissue and insulin resistance, in response to a high-fat diet.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hiromi Sakashita ◽  
Satoru Yamada ◽  
Masaki Kinoshita ◽  
Tetsuhiro Kajikawa ◽  
Tomoaki Iwayama ◽  
...  

AbstractAdipose tissue fibrosis with chronic inflammation is a hallmark of obesity-related metabolic disorders, and the role of proteoglycans in developing adipose tissue fibrosis is of interest. Periodontal disease is associated with obesity; however, the underlying molecular mechanisms remain unclear. Here we investigated the roles of periodontal ligament associated protein-1 (PLAP-1)/asporin, a proteoglycan preferentially and highly expressed in the periodontal ligament, in obesity-related adipose tissue dysfunction and adipocyte differentiation. It was found that PLAP-1 is also highly expressed in white adipose tissues. Plap-1 knock-out mice counteracted obesity and alveolar bone resorption induced by a high-fat diet. Plap-1 knock-down in 3T3-L1 cells resulted in less lipid accumulation, and recombinant PLAP-1 enhanced lipid accumulation in 3T3-L1 cells. In addition, it was found that primary preadipocytes isolated from Plap-1 knock-out mice showed lesser lipid accumulation than the wild-type (WT) mice. Furthermore, the stromal vascular fraction of Plap-1 knock-out mice showed different extracellular matrix gene expression patterns compared to WT. These findings demonstrate that PLAP-1 enhances adipogenesis and could be a key molecule in understanding the association between periodontal disease and obesity-related metabolic disorders.


Sign in / Sign up

Export Citation Format

Share Document