scholarly journals Not just any old pile of dirt: evaluating the use of artificial nesting mounds as conservation tools for freshwater turtles

Oryx ◽  
2013 ◽  
Vol 47 (4) ◽  
pp. 607-615 ◽  
Author(s):  
James E. Paterson ◽  
Brad D. Steinberg ◽  
Jacqueline D. Litzgus

AbstractThe viability of freshwater turtle populations is largely dependent on the survivorship of reproducing females but females are frequently killed on roads as they move to nesting sites. Installing artificial nesting mounds may increase recruitment and decrease the risk of mortality for gravid females by enticing them to nest closer to aquatic habitats. We evaluated the effectiveness of artificial nesting mounds installed in Algonquin Park, Canada. Artificial mounds were monitored for 2 years to determine if turtles would select them for nest sites. We also simulated turtle paths from wetlands to nests to determine the probability that females would encounter the new habitat. A transplant experiment with clutches of Chrysemys picta and Chelydra serpentina eggs compared nest success and incubation conditions in the absence of predation between artificial mounds and natural sites. More turtles than expected used the artificial mounds, although mounds comprised a small proportion of the available nesting habitat and the simulations predicted that the probability of females encountering mounds was low. Hatching success was higher in nests transplanted to artificial mounds (93%) than in natural nests (56%), despite no differences in heat units. Greater use than expected, high hatching success, and healthy hatchlings emerging from nests in artificial mounds suggest promise for their use as conservation tools.

2014 ◽  
Vol 128 (2) ◽  
pp. 179 ◽  
Author(s):  
Julia L. Riley ◽  
Jacqueline D. Litzgus

Previous studies have found that turtle nest depredation is concentrated immediately post-oviposition, likely because cues alerting predators to nest presence are most obvious during this time. In Algonquin Provincial Park, Ontario, we examined the frequency of nest depredation during the incubation period for Snapping Turtles (Chelydra serpentina [Linnaeus, 1758]) and Midland Painted Turtles (Chrysemys picta marginata [Agassiz, 1857]). Contrary to most past findings, nest depredation occurred throughout the incubation period for both species. In fact, 83% and 86% of depredation interactions with Snapping and Painted Turtle nests, respectively, occurred more than a week after oviposition at our study site. Peaks in nest depredation (weeks with ≥10% nest depredation) occurred late in incubation and may have coincided with hatching. Trail cameras deployed at four nesting sites revealed six predator species interacting with nests. The presence of predators at nest sites increased late in the incubation period indicating a persistence or renewal (from hatching) of cues; additional research is necessary to determine the nature of these cues. These findings have implications for both research and turtle conservation. Further research should examine the relationship between temporal changes in predator species’ density and patterns of nest depredation. Additionally, in areas where protective nest caging is used as a species recovery action, it may be important to ensure that cages remain in place throughout the incubation period until emergence of hatchlings.


2007 ◽  
Vol 121 (2) ◽  
pp. 178 ◽  
Author(s):  
Gordon R. Ultsch ◽  
Matt Draud ◽  
Barry Wicklow

Hatchling Common Snapping Turtles (Chelydra serpentina) were captured within, or as they emerged from, their nest cavities in Long Island, New York, and in southeastern New Hampshire. They were fitted with radiotransmitters and released at their nest sites. Their movements were monitored for as long as possible, which for some included tracking them to their overwintering sites and relocating them the following spring. On Long Island, all hatchlings initially moved to water. Later movements were both aquatic and terrestrial, and those that could be located while overwintering had left the water and hibernated in spring seeps, where they were recovered alive the following April. In New Hampshire, hatchlings moved directly to nearby aquatic habitats after emergence, where they spent the winter submerged in shallow water in root masses near banks.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Adam G. Clause ◽  
Aaron J. Celestian ◽  
Gregory B. Pauly

AbstractPlastic pollution, and especially plastic ingestion by animals, is a serious global issue. This problem is well documented in marine systems, but it is relatively understudied in freshwater systems. For turtles, it is unknown how plastic ingestion compares between marine and non-marine species. We review the relevant turtle dietary literature, and find that plastic ingestion is reported for all 7 marine turtle species, but only 5 of 352 non-marine turtle species. In the last 10 years, despite marine turtles representing just 2% of all turtle species, almost 50% of relevant turtle dietary studies involved only marine turtles. These results suggest that the potential threat of plastic ingestion is poorly studied in non-marine turtles. We also examine plastic ingestion frequency in a freshwater turtle population, finding that 7.7% of 65 turtles had ingested plastic. However, plastic-resembling organic material would have inflated our frequency results up to 40% higher were it not for verification using Raman spectroscopy. Additionally, we showcase how non-native turtles can be used as a proxy for understanding the potential for plastic ingestion by co-occurring native turtles of conservation concern. We conclude with recommendations for how scientists studying non-marine turtles can improve the implementation, quality, and discoverability of plastic ingestion research.


Copeia ◽  
1996 ◽  
Vol 1996 (3) ◽  
pp. 713 ◽  
Author(s):  
Tracey D. Tuberville ◽  
J. Whitfield Gibbons ◽  
Judith L. Greene

2019 ◽  
Vol 129 (2) ◽  
pp. 388-397
Author(s):  
Benjamin J Muller ◽  
Robin M Andrews ◽  
Lin Schwarzkopf ◽  
David A Pike

Abstract Microhabitat orientation and structure and the presence of conspecifics may strongly influence the choice of habitat. We studied how these variables influence retreat- and nest-site selection in gravid females of a globally successful invasive species, the Asian house gecko (Hemidactylus frenatus). When provided with various substrates (vertical and horizontal ceramic tiles, vertical and horizontal plywood tiles, horizontal bark over leaf litter, vertical bark over a log, and sand) gravid female geckos preferred to retreat to, and nest in, materials with crevices commonly found in urban habitats. When housed alone, gravid females most frequently retreated to vertical ceramic tile or wooden crevices, and 66.7% nested in vertical ceramic tiles. When housed with two other conspecifics, gravid females most frequently retreated to vertical ceramic tiles, but selected a wider range of nest sites. Overall, gravid geckos housed alone typically nested in the same substrates that they used as diurnal retreats; when housed in groups, however, females oviposited in locations different from those they selected as retreats. Thus, H. frenatus females use a wider range of substrates when conspecifics are present. Invasion success in this species might be driven, in part, by preferences for retreat and nest substrates that are common in human-dominated habitats.


Author(s):  
Georgia Hennessy ◽  
Dave Goulson ◽  
Francis L. W. Ratnieks

Abstract Anthophora retusa is a rare solitary bee which has declined throughout Britain and other European countries since the 1990s. It is thought to be restricted to five sites in Britain. However, information on these remaining populations is limited. Knowledge on population size, habitat and forage requirements and foraging distance, are important for successful conservation of species. The population of A. retusa at the Seaford Head Nature reserve in East Sussex was surveyed. Transects within the reserve were conducted and population estimates using mark recapture were made for 2018 and 2019. Pollen from foraging females was analysed alongside visual sightings to determine forage requirements. The total population was estimated to be 91 in 2018 (males and females) with an estimated male population of 167 in 2019. The most visited flower species by females was Glechoma hederacea (66% of visits) but flower preference changed throughout the flight season, shifting to Fabaceae species and Iris foetidissima with 16 plant groups identified in pollen samples. Bees were geographically restricted to a small area within the reserve (approximately 30 ha). Although the exact location of nesting sites was not determined with certainty it is thought nests are in the loess deposits at the top of the inaccessible sea cliff face. This project suggests the presence of appropriate nesting sites may be limiting A. retusa distribution as they appear to forage on common plant species. More research is needed on the exact nesting requirements of the species. Implications for Insect Conservation The findings from this paper help contribute to the limited understanding of the ecology of this rare and declining species. By knowing the forage requirements of A. retusa, other areas where it is found can ensure these are present within a short distance of nest sites, hopefully ensuring the survival of individual populations and therefore the species.


2012 ◽  
Vol 39 (8) ◽  
pp. 705 ◽  
Author(s):  
Deborah S. Bower ◽  
Clare E. Death ◽  
Arthur Georges

Context The increasing intensity and extent of anthropogenically mediated salinisation in freshwater systems has the potential to affect freshwater species through physiological and ecological processes. Determining responses to salinisation is critical to predicting impacts on fauna. Aims We aimed to quantify the response of wild-caught turtles from freshwater lakes that had become saline in the lower Murray River catchment. Methods Plasma electrolytes of all three species of freshwater turtle from South Australia were compared among two freshwater sites (Horseshoe Lagoon and Swan Reach), a brackish lake (Lake Bonney) and a saline lake (Lake Alexandrina). Key results Chelodina longicollis, C. expansa and Emydura macquarii from a brackish lake had higher concentrations of plasma sodium and chloride than those from freshwater habitats. However, osmolytes known to increase under severe osmotic stress (urea and uric acid) were not elevated in brackish sites. Turtles from the highly saline lake were colonised by an invasive marine worm which encased the carapace and inhibited limb movement. Conclusions Freshwater turtles in brackish backwaters had little response to salinity, whereas the C. longicollis in a saline lake had a significant physiological response caused by salt and further impacts from colonisation of marine worms. Implications Short periods of high salinity are unlikely to adversely affect freshwater turtles. However, secondary ecological processes, such as immobilisation from a marine worm may cause unexpected impacts on freshwater fauna.


Oryx ◽  
2010 ◽  
Vol 44 (2) ◽  
pp. 261-266 ◽  
Author(s):  
Tien-Hsi Chen ◽  
Kuang-Yang Lue

AbstractBecause of burgeoning demand in the Chinese market and extensive habitat loss more than half of the freshwater turtle and tortoise species in Asia are categorized as Endangered or Critically Endangered on the IUCN Red List. To investigate the distribution and status of the native freshwater turtle species of Taiwan a trapping programme was conducted during 2001–2007, yielding a total of 1,828 individuals of four native species at 103 sites. Mauremys sinensis was the most abundant and widely distributed species; it was collected from 70 sites and accounted for 78.6% of all turtles captures. Mauremys mutica comprised 17.8% at 46 sites. Pelodiscus sinensis were captured in low numbers at 19 sites. No Mauremys reevesii were collected on the main island of Taiwan but the species was found on Kinmen Island near mainland China. Capture success was low at most sites and overall sex ratios were significantly male-biased in all species, suggesting that the freshwater turtles have suffered from the negative effects of habitat disturbance and extensive exploitation. Effective conservation measures are urgently required to ensure the viability of the native freshwater turtle species of Taiwan.


2002 ◽  
Vol 205 (3) ◽  
pp. 415-425
Author(s):  
Sonya D. Johnston ◽  
Christopher B. Daniels ◽  
David Cenzato ◽  
Jeffrey A. Whitsett ◽  
Sandra Orgeig

SUMMARY Pulmonary surfactant (PS), a mixture of phospholipids (PL), neutral lipids and surfactant proteins (SP), lowers surface tension within the lung, which increases lung compliance and improves the removal of fluid at birth. Here, we have examined the expression of thyroid transcription factor-1 (TTF-1) and the surfactant protein SP-B, and also the composition of pulmonary surfactant lipids in the developing lung of the turtle Chelydra serpentina. Lavage and lung tissue were collected from late embryonic, pipped and hatchling turtles. TTF-1, a regulator of gene expression of surfactant proteins and cell differentiation in mammals, was detected using immunohistochemistry in epithelia of the gas-exchange area and conducting airways during late development. Expression declined in hatchlings. SP-B was detected in subsets of cells within the respiratory epithelium at all stages sampled. The same cell types also stained for TTF-1. Turtle surfactant lipids matured toward the end of incubation. Maximal secretion of both total phospholipids and disaturated phospholipid (DSP) occurred at the time of pipping, coincident with the onset of breathing. The DSP/PL ratio increased after pipping, whereas cholesterol levels (Chol) increased prior to pipping. This resulted in a decrease in the Chol/PL and Chol/DSP ratios after pipping. Thus, TTF-1 and SP-B appear to be highly conserved within the vertebrates. Maturation of surfactant phospholipid content occurred with the commencement of pulmonary ventilation.


2020 ◽  
Vol 134 (1) ◽  
pp. 56-59
Author(s):  
Michael T. Jones ◽  
Lisabeth L. Willey ◽  
Derek T. Yorks ◽  
Peter D. Hazelton ◽  
Steve L. Johnson

Dispersal of freshwater mussels (order Unionida) is primarily as glochidia on the fins and gills of host fish. Adult mussels are more sessile, generally moving short distances (<2 m/week) along lake and river beds. Between 2007 and 2016, we observed seven instances of adult Eastern Elliptio (Elliptio complanata) and one instance of a fingernail clam (Sphaerium sp.) attached to the feet of freshwater turtles in streams and ponds of New England, United States. Observations included five instances of mussels attached to Wood Turtles (Glyptemys insculpta) in Maine and Massachusetts, one instance of a mussel attached to the fingernail of an Eastern Painted Turtle (Chrysemys picta) in Massachusetts, one instance of a mussel attached to a Snapping Turtle (Chelydra serpentina) in Massachusetts, and one instance of a fingernail clam attached to the fingernail of an Eastern Painted Turtle in Massachusetts. We suggest that Eastern Elliptio may be susceptible to transport by freshwater turtles foraging in mussel beds and that transport of adult mussels by freshwater turtles could result in otherwise atypical long-distance, upstream, or overland dispersal between waterbodies.


Sign in / Sign up

Export Citation Format

Share Document