scholarly journals Using climate change models to inform the recovery of the western ground parrot Pezoporus flaviventris

Oryx ◽  
2019 ◽  
Vol 54 (1) ◽  
pp. 52-61
Author(s):  
Shaun W. Molloy ◽  
Allan H. Burbidge ◽  
Sarah Comer ◽  
Robert A. Davis

AbstractTranslocation of species to areas of former habitat after threats have been mitigated is a common conservation action. However, the long-term success of reintroduction relies on identification of currently available habitat and areas that will remain, or become, habitat in the future. Commonly, a short-term view is taken, focusing on obvious and assumed threats such as predators and habitat degradation. However, in areas subject to significant climate change, challenges include correctly identifying variables that define habitat, and considering probable changes over time. This poses challenges with species such as the western ground parrot Pezoporus flaviventris, which was once relatively common in near-coastal south-western Australia, an area subject to major climate change. This species has declined to one small population, estimated to comprise < 150 individuals. Reasons for the decline include altered fire regimes, introduced predators and habitat clearing. The establishment of new populations is a high priority, but the extent to which a rapidly changing climate has affected, and will continue to affect, this species remains largely conjecture, and understanding probable climate change impacts is essential to the prioritization of potential reintroduction sites. We developed high-resolution species distribution models and used these to investigate climate change impacts on current and historical distributions, and identify locations that will remain, or become, bioclimatically suitable habitat in the future. This information has been given to an expert panel to identify and prioritize areas suitable for site-specific management and/or translocation.

Author(s):  
Hongjun Jiang ◽  
Ting Liu ◽  
Shiping Gao ◽  
Ruijun Wang ◽  
Ruchun Zhang ◽  
...  

Aim:Artemisia annua L. is the one and only original plant used to isolate artemisinin which is a highly effective remedy to fight malaria. Climate change leads to change of distribution and suitable range for many species and A. annua is no exception. However, it is not clear that the potential distribution and suitable range change of this unique plant under climate change. Therefore, we present this research to study its change in the future. Location: Global. Methods: Since the accuracy of species distribution models was affected by occurrence records and environmental variables, 1062 presence records and 7 variables were picked out to build ensemble models with 10 different algorithms by means of biomod2 under current and future climate scenarios. Results: At present, except SRE, the AUC values of the rest models were greater than 0.8, and the TSS values were greater than 0.6, the values of ensemble model were 0.968 and 0.826 respectively. Mean temperature of driest quarter was the dominant factor to shape the range of A. annua and its optimum interval ranged from 4.8 to 23.3ºC. The high suitable habitats of A. annua were mainly located in Eastern Asia, Western Europe, Central Europe. In the future, the high suitable area would decline at 15.55% to 25.87%. Main conclusions: Ensemble models showed it performed better than any the single one. At present, the high suitable habitat simulated by ensemble model was in accordance with the actual occurrence records. In the future, the high suitable habitat for A. annua would move northeast, and disappear in North America. They would increase with time under each SSP, but sharply decline while comparing with the current one. This study can be used to protect wild resource and guide cultivation for A. annua, which would make modest contribution to fight malaria.


2021 ◽  
Vol 8 ◽  
Author(s):  
Bryony L. Townhill ◽  
Elena Couce ◽  
James Bell ◽  
Stuart Reeves ◽  
Oliver Yates

Climate change is already affecting the distributions of marine fish, and future change is expected to have a particularly large impact on small islands that are reliant on the sea for much of their income. This study aims to develop an understanding of how climate change may affect the distribution of commercially important tuna in the waters around the United Kingdom’s Overseas Territories in the South Atlantic. The future suitable habitat of southern bluefin, albacore, bigeye, yellowfin and skipjack tunas were modelled under two future climate change scenarios. Of all the tunas, the waters of Tristan da Cunha are the most suitable for southern bluefin, and overall, the environmental conditions will remain so in the future. Tristan da Cunha is not projected to become more suitable for any of the other tuna species in the future. For the other tuna species, Ascension Island and Saint Helena will become more suitable in the future, particularly so for skipjack tuna around Ascension Island, as the temperature and salinity conditions change in these areas. Large marine protected areas have been designated around the territories, with those in Ascension and Tristan da Cunha closed to tuna fishing. Although these areas are small relative to the whole Atlantic, these model projections could be useful in understanding whether this protection will benefit tuna populations into the future, particularly where there is high site fidelity.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2554 ◽  
Author(s):  
Yanlong Guo ◽  
Haiyan Wei ◽  
Chunyan Lu ◽  
Bei Gao ◽  
Wei Gu

Climate change will significantly affect plant distribution as well as the quality of medicinal plants. Although numerous studies have analyzed the effect of climate change on future habitats of plants through species distribution models (SDMs), few of them have incorporated the change of effective content of medicinal plants.Schisandra sphenantheraRehd. et Wils. is an endangered traditional Chinese medical plant which is mainly located in the Qinling Mountains. Combining fuzzy theory and a maximum entropy model, we obtained current spatial distribution of quality assessment forS. spenanthera. Moreover, the future quality and distribution ofS. spenantherawere also projected for the periods 2020s, 2050s and 2080s under three different climate change scenarios (SRES-A1B, SRES-A2 and SRES-B1 emission scenarios) described in the Special Report on Emissions Scenarios (SRES) of IPCC (Intergovernmental Panel on Climate Change). The results showed that the moderately suitable habitat ofS. sphenantheraunder all climate change scenarios remained relatively stable in the study area. The highly suitable habitat ofS. sphenantherawould gradually decrease in the future and a higher decline rate of the highly suitable habitat area would occur under climate change scenarios SRES-A1B and SRES-A2. The result suggested that in the study area, there would be no more highly suitable habitat areas forS. sphenantherawhen the annual mean temperature exceeds 20 °C or its annual precipitation exceeds 1,200 mm. Our results will be influential in the future ecological conservation and management ofS. sphenantheraand can be taken as a reference for habitat suitability assessment research for other medicinal plants.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 84
Author(s):  
Huanchu Liu ◽  
Hans Jacquemyn ◽  
Xingyuan He ◽  
Wei Chen ◽  
Yanqing Huang ◽  
...  

Human pressure on the environment and climate change are two important factors contributing to species decline and overall loss of biodiversity. Orchids may be particularly vulnerable to human-induced losses of habitat and the pervasive impact of global climate change. In this study, we simulated the extent of the suitable habitat of three species of the terrestrial orchid genus Cypripedium in northeast China and assessed the impact of human pressure and climate change on the future distribution of these species. Cypripedium represents a genus of long-lived terrestrial orchids that contains several species with great ornamental value. Severe habitat destruction and overcollection have led to major population declines in recent decades. Our results showed that at present the most suitable habitats of the three species can be found in Da Xing’an Ling, Xiao Xing’an Ling and in the Changbai Mountains. Human activity was predicted to have the largest impact on species distributions in the Changbai Mountains. In addition, climate change was predicted to lead to a shift in distribution towards higher elevations and to an increased fragmentation of suitable habitats of the three investigated Cypripedium species in the study area. These results will be valuable for decision makers to identify areas that are likely to maintain viable Cypripedium populations in the future and to develop conservation strategies to protect the remaining populations of these enigmatic orchid species.


Author(s):  
X. Costoya ◽  
M. deCastro ◽  
D. Carvalho ◽  
Z. Feng ◽  
M. Gómez-Gesteira

Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 726
Author(s):  
Paul Carroll ◽  
Eeva Aarrevaara

Future climate conditions need to be considered in planning for urban areas. As well as considering how new structures would best endure in the future, it is important to take into account factors that contribute to the degradation of cultural heritage buildings in the urban setting. Climate change can cause an increase in structural degradation. In this paper, a review of both what these factors are and how they are addressed by urban planners is presented. A series of inquiries into the topic was carried out on town planning personnel and those involved in cultural heritage preservation in several towns and cities in Finland and in a small number of other European countries. The target group members were asked about observed climate change impacts on cultural heritage, about present steps being taken to protect urban cultural heritage, and also their views were obtained on how climate change impacts will be emphasised in the future in this regard. The results of the inquiry demonstrate that climate change is still considered only in a limited way in urban planning, and more interaction between different bodies, both planning and heritage authorities, as well as current research on climate change impacts, is needed in the field.


2020 ◽  
Author(s):  
Lieke Anna Melsen ◽  
Björn Guse

Abstract. Hydrological models are useful tools to explore the hydrological impact of climate change. Many of these models require calibration. A frequently employed strategy is to calibrate the five parameters that were found to be most relevant as identified in a sensitivity analysis. However, parameter sensitivity varies over climate, and therefore climate change could influence parameter sensitivity. In this study we explore the change in parameter sensitivity within a plausible climate change rate, and investigate if changes in sensitivity propagate into the calibration strategy. We employed three frequently used hydrological models (SAC, VIC, and HBV), and explored parameter sensitivity changes across 605 catchments in the United States by comparing a GCM-forced historical and future period. Consistent among all models is that the sensitivity of snow parameters decreases in the future. Which parameters increase in sensitivity is less consistent among the models. In 43 % to 49 % of the catchments, dependent on the model, at least one parameter changes in the future in the top-5 most sensitive parameters. The maximum number of changes in the parameter top-5 is two, in 2–4 % of the investigated catchments. The value of the parameters that enter the top-5 cannot easily be identified based on historical data, because the model is not yet sensitive to these parameters. This requires an adapted calibration strategy for long-term projections, for which we provide several suggestions. The disagreement among the models on processes becoming relevant in future projections also calls for a strict evaluation of the adequacy of the model structure and the model parameters implemented therein.


2021 ◽  
Author(s):  
Orestis Stavrakidis-Zachou ◽  
Konstadia Lika ◽  
Panagiotis Anastasiadis ◽  
Nikos Papandroulakis

Abstract Finfish aquaculture in the Mediterranean Sea faces increasing challenges due to climate change while potential adaptation requires a robust assessment of the arising threats and opportunities. This paper presents an approach developed to investigate effects of climate drivers on Greek aquaculture, a representative Mediterranean country with a leading role in the sector. Using a farm level approach, Dynamic Energy Budget models for European seabass and meagre were developed and environmental forcing was used to simulate changes in production and farm profitability under IPCC scenarios RCP45 and RCP85. The effects of temperature and extreme weather events at the individual and farm level were considered along with that of husbandry parameters such as stocking timing, market size, and farm location (inshore, offshore) for nine regions. The simulations suggest that at the individual level fish may benefit from warmer temperatures in the future in terms of growth, thus reaching commercial sizes faster, while the husbandry parameters may have as large an effect on growth as the projected shifts in climatic cues. However, this benefit will be largely offset by the adverse effects of extreme weather events at the population level. Such events will be more frequent in the future and, depending on the intensity one assigns to them, they could cause losses in biomass and farm profits that range from mild to detrimental for the industry. Overall, these results provide quantification of some of the potential threats for an important aquaculture sector while suggesting possibilities to benefit from emerging opportunities. Therefore, they could contribute to improving the sector’s readiness for tackling important challenges in the future.


2019 ◽  
Vol 76 (6) ◽  
pp. 1390-1392 ◽  
Author(s):  
Manuel Barange

Abstract It is common to assume that climate change impacts on future fish catches, relative to current levels of catch, are directly proportional to changes in the capacity of the ocean to produce fish. However, this would only be the case if production was optimized, which is not the case, and continues to do so in the future, which we do not know. It is more appropriate to see changes in the ocean’s productive capacity as providing an upper limit to future fish catches, but whether these catches are an increase or a decrease from present catch levels depends on management decisions now and in the future, rather than on the ocean’s productive capacity alone. Disregarding the role of management in driving current and future catches is not only incorrect but it also removes any encouragement for management agencies to improve performance. It is concluded that climate change provides one of the most powerful arguments to improve fisheries—and environmental—management, and thus fisheries sustainability globally.


Author(s):  
Carrie Wells ◽  
David Tonkyn

Climate change is predicted to alter the geographic distribution of a wide variety of taxa, including butterfly species. Research has focused primarily on high latitude species in North America, with no known studies examining responses of taxa in the southeastern US. The Diana fritillary (Speyeria diana) has experienced a recent range retraction in that region, disappearing from lowland sites and now persisting in two, phylogenetically disjunct mountainous regions. These findings are consistent with the predicted effects of a warming climate on numerous taxa, including other butterfly species in North America and Europe. We used ecological niche modeling to predict future changes to the distribution of S. diana under several climate models. To evaluate how climate change might influence the geographic distribution of this butterfly, we developed ecological niche models using Maxent. We used two global circulation models, CCSM and MIROC, under low and high emissions scenarios to predict the future distribution of S. diana. Models were evaluated using the Receiver Operating Characteristics Area Under Curve test and the True Skill Statistics (mean AUC = 0.91&plusmn; 0.0028 SE, TSS = 0.87 &plusmn; 0.0032 SE for RCP = 4.5, and mean AUC = 0.87&plusmn; 0.0031SE, TSS = 0.84 &plusmn; 0.0032 SE for RCP = 8.5), which both indicate that the models we produced were significantly better than random (0.5). The four modeled climate scenarios resulted in an average loss of 91% of suitable habitat for S. diana by 2050. Populations in the Southern Appalachian Mountains were predicted to suffer the most severe fragmentation and reduction in suitable habitat, threatening an important source of genetic diversity for the species. The geographic and genetic isolation of populations in the west suggest that those populations are equally as vulnerable to decline in the future, warranting ongoing conservation of those populations as well. Our results suggest that the Diana fritillary is under threat of decline by 2050 across its entire distribution from climate change, and is likely to be negatively affected by other human-induced factors as well.


Sign in / Sign up

Export Citation Format

Share Document