scholarly journals Climate Change Impacts on Atlantic Oceanic Island Tuna Fisheries

2021 ◽  
Vol 8 ◽  
Author(s):  
Bryony L. Townhill ◽  
Elena Couce ◽  
James Bell ◽  
Stuart Reeves ◽  
Oliver Yates

Climate change is already affecting the distributions of marine fish, and future change is expected to have a particularly large impact on small islands that are reliant on the sea for much of their income. This study aims to develop an understanding of how climate change may affect the distribution of commercially important tuna in the waters around the United Kingdom’s Overseas Territories in the South Atlantic. The future suitable habitat of southern bluefin, albacore, bigeye, yellowfin and skipjack tunas were modelled under two future climate change scenarios. Of all the tunas, the waters of Tristan da Cunha are the most suitable for southern bluefin, and overall, the environmental conditions will remain so in the future. Tristan da Cunha is not projected to become more suitable for any of the other tuna species in the future. For the other tuna species, Ascension Island and Saint Helena will become more suitable in the future, particularly so for skipjack tuna around Ascension Island, as the temperature and salinity conditions change in these areas. Large marine protected areas have been designated around the territories, with those in Ascension and Tristan da Cunha closed to tuna fishing. Although these areas are small relative to the whole Atlantic, these model projections could be useful in understanding whether this protection will benefit tuna populations into the future, particularly where there is high site fidelity.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lina Caballero-Villalobos ◽  
Francisco Fajardo-Gutiérrez ◽  
Mariasole Calbi ◽  
Gustavo A. Silva-Arias

It is predicted that climate change will strongly affect plant distributions in high elevation “sky islands” of tropical Andes. Polylepis forests are a dominant element of the treeline throughout the Andes Cordillera in South America. However, little is known about the climatic factors underlying the current distribution of Polylepis trees and the possible effect of global climate change. The species Polylepis quadrijuga is endemic to the Colombian Eastern Cordillera, where it plays a fundamental ecological role in high-altitude páramo-forest ecotones. We sought to evaluate the potential distribution of P. quadrijuga under future climate change scenarios using ensemble modeling approaches. We conducted a comprehensive assessment of future climatic projections deriving from 12 different general circulation models (GCMs), four Representative Concentration Pathways (R) emissions scenarios, and two different time frames (2041–2060 and 2061–2080). Additionally, based on the future projections, we evaluate the effectiveness of the National System of Protected Natural Areas of Colombia (SINAP) and Páramo Complexes of Colombia (PCC) in protecting P. quadrijuga woodlands. Here, we compiled a comprehensive set of observations of P. quadrijuga and study them in connection with climatic and topographic variables to identify environmental predictors of the species distribution, possible habitat differentiation throughout the geographic distribution of the species, and predict the effect of different climate change scenarios on the future distribution of P. quadrijuga. Our results predict a dramatic loss of suitable habitat due to climate change on this key tropical Andean treeline species. The ensemble Habitat Suitability Modeling (HSM) shows differences in suitable scores among north and south regions of the species distribution consistent with differences in topographic features throughout the available habitat of P. quadrijuga. Future projections of the HSM predicted the Páramo complex “Sumapaz-Cruz Verde” as a major area for the long-term conservation of P. quadrijuga because it provides a wide range of suitable habitats for the different evaluated climate change scenarios. We provide the first set of priority areas to perform both in situ and ex situ conservation efforts based on suitable habitat projections.



2021 ◽  

Abstract This book is a collection of 77 expert opinions arranged in three sections. Section 1 on "Climate" sets the scene, including predictions of future climate change, how climate change affects ecosystems, and how to model projections of the spatial distribution of ticks and tick-borne infections under different climate change scenarios. Section 2 on "Ticks" focuses on ticks (although tick-borne pathogens creep in) and whether or not changes in climate affect the tick biosphere, from physiology to ecology. Section 3 on "Disease" focuses on the tick-host-pathogen biosphere, ranging from the triangle of tick-host-pathogen molecular interactions to disease ecology in various regions and ecosystems of the world. Each of these three sections ends with a synopsis that aims to give a brief overview of all the expert opinions within the section. The book concludes with Section 4 (Final Synopsis and Future Predictions). This synopsis attempts to summarize evidence provided by the experts of tangible impacts of climate change on ticks and tick-borne infections. In constructing their expert opinions, contributors give their views on what the future might hold. The final synopsis provides a snapshot of their expert thoughts on the future.



2020 ◽  
Vol 8 ◽  
Author(s):  
Pablo Medrano-Vizcaíno ◽  
Patricia Gutiérrez-Salazar

Nasuella olivacea is an endemic mammal from the Andes of Ecuador and Colombia. Due to its rarity, aspects about its natural history, ecology and distribution patterns are not well known, therefore, research is needed to generate knowledge about this carnivore and a first step is studying suitable habitat areas. We performed Ecological Niche Models and applied future climate change scenarios (2.6 and 8.5 RCP) to determine the potential distribution of this mammal in Colombia and Ecuador, with current and future climate change conditions; furthermore, we analysed its distribution along several land covers. We found that N. olivacea is likely to be found in areas where no records have been reported previously; likewise, climate change conditions would increase suitable distribution areas. Concerning land cover, 73.4% of N. olivacea potential distribution was located outside Protected Areas (PA), 46.1% in Forests and 40.3% in Agricultural Lands. These findings highlight the need to further research understudied species, furthering our understanding about distribution trends and responses to changing climatic conditions, as well as informig future PA designing. These are essential tools for supporting wildlife conservation plans, being applicable for rare species whose biology and ecology remain unknown.



2017 ◽  
Author(s):  
Marit Van Tiel ◽  
Adriaan J. Teuling ◽  
Niko Wanders ◽  
Marc J. P. Vis ◽  
Kerstin Stahl ◽  
...  

Abstract. Glaciers are essential hydrological reservoirs, storing and releasing water at various time scales. Short-term variability in glacier melt is one of the causes of streamflow droughts, defined as below normal water availabilities. Streamflow droughts in glacierised catchments have a wide range of interlinked causing factors related to precipitation and temperature on short and long time scales. Climate change affects glacier storage capacity, with resulting consequences for discharge regimes and drought. Future projections of streamflow drought in glacierised basins can, however, strongly depend on the modelling strategies and analysis approaches applied. Here, we examine the effect of different approaches, concerning the glacier modelling and the drought threshold, on the characterisation of streamflow droughts in glacierised catchments. Streamflow is simulated with the HBV-light model for two case study catchments, the Nigardsbreen catchment in Norway and the Wolverine catchment in Alaska, and two future climate change scenarios (RCP4.5 and RCP8.5). Two types of glacier modelling are applied, a constant and dynamical glacier area conceptualisation. Streamflow droughts are identified with the variable threshold level method and their characteristics are compared between two periods, a historical (1975–2004) and future (2071–2100) period. Two existing threshold approaches to define future droughts are employed, (1) the threshold from the historical period and (2) a transient threshold approach, whereby the threshold adapts every year in the future to the changing regimes. Results show that drought characteristics differ among the combinations of glacier area modelling and thresholds. The historical threshold combined with a dynamical glacier area projects extreme increases in drought severity in the future, caused by the regime shift due to a reduction in glacier area. The historical threshold combined with a constant glacier area results in a drastic decrease of the number of droughts. The drought characteristics between future and historic periods are more similar when the transient threshold is used, for both glacier dynamics conceptualisations. With the transient threshold causing factors of future droughts, can be analysed. This study revealed the different effects of methodological choices on future streamflow drought projections and it highlights how the options can be used to analyse different aspects of future droughts: the transient threshold for analysing future drought processes, the historical threshold to assess changes between periods, the constant glacier area to analyse the effect of short term climate variability on droughts and the dynamical glacier area to model realistic future discharges under climate change.



Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 637 ◽  
Author(s):  
Tim van der Schriek ◽  
Konstantinos V. Varotsos ◽  
Christos Giannakopoulos ◽  
Dimitra Founda

This is the first study to look at future temporal urban heath island (UHI) trends of Athens (Greece) under different UHI intensity regimes. Historical changes in the Athens UHI, spanning 1971–2016, were assessed by contrasting two air temperature records from stable meteorological stations in contrasting urban and rural settings. Subsequently, we used a five-member regional climate model (RCM) sub-ensemble from EURO-CORDEX with a horizontal resolution of 0.11° (~12 × 12 km) to simulate air temperature data, spanning the period 1976–2100, for the two station sites. Three future emissions scenarios (RCP2.6, RCP4.5, and RCP8.5) were implanted in the simulations after 2005 covering the period 2006–2100. Two 20-year historical reference periods (1976–1995 and 1996–2015) were selected with contrasting UHI regimes; the second period had a stronger intensity. The daily maximum and minimum air temperature data (Tmax and Tmin) for the two reference periods were perturbed to two future periods, 2046–2065 and 2076–2095, under the three RCPs, by applying the empirical quantile mapping (eqm) bias-adjusting method. This novel approach allows us to assess future temperature developments in Athens under two UHI intensity regimes that are mainly forced by differences in air pollution and heat input. We found that the future frequency of days with Tmax > 37 °C in Athens was only different from rural background values under the intense UHI regime. Thus, the impact of heatwaves on the urban environment of Athens is dependent on UHI intensity. There is a large increase in the future frequency of nights with Tmin > 26 °C in Athens under all UHI regimes and climate scenarios; these events remain comparatively rare at the rural site. This large urban amplification of the frequency of extremely hot nights is likely caused by air pollution. Consequently, local mitigation policies aimed at decreasing urban atmospheric pollution are expected to be highly effective in reducing urban temperatures and extreme heat events in Athens under future climate change scenarios. Such policies directly have multiple benefits, including reduced electricity (energy) needs, improved living quality and strong health advantages (heat- and pollution-related illness/deaths).



Author(s):  
Ren-Yan Duan ◽  
Xiao-Quan Kong ◽  
Min-Yi Huang ◽  
Sara Varela ◽  
Xiang Ji

Many studies predict that climate change will cause species movement and turnover, but few studies have considered the effect of climate change on range fragmentation for current species and/or populations. We used MaxEnt to predict suitable habitat, fragmentation and turnover for 134 amphibian species in China under 40 future climate change scenarios spanning four pathways (RCP2.6, RCP4.5, RCP6 and RCP8.5) and two time periods (the 2050s and 2070s). Our results show that climate change will cause a major shift in the spatial patterns of amphibian diversity. Suitable habitats for over 90% of species will be located in the north of the current range, for over 95% of species in higher altitudes, and for over 75% of species in the west of the current range. The distributions of species predicted to move westwards, southwards and to higher altitudes will contract, while the ranges of the species not showing these trends will expand. Amphibians will lose 20% of their original ranges on average; the distribution outside current ranges will increase by 15%. Climate change will likely modify the spatial configuration of climatically suitable areas. Changes in area and fragmentation of climatically suitable patches are related, which means that species may be simultaneously affected by different stressors as a consequence of climate change.



PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2185 ◽  
Author(s):  
Ren-Yan Duan ◽  
Xiao-Quan Kong ◽  
Min-Yi Huang ◽  
Sara Varela ◽  
Xiang Ji

Many studies predict that climate change will cause species movement and turnover, but few have considered the effect of climate change on range fragmentation for current species and/or populations. We used MaxEnt to predict suitable habitat, fragmentation and turnover for 134 amphibian species in China under 40 future climate change scenarios spanning four pathways (RCP2.6, RCP4.5, RCP6 and RCP8.5) and two time periods (the 2050s and 2070s). Our results show that climate change may cause a major shift in spatial patterns of amphibian diversity. Amphibians in China would lose 20% of their original ranges on average; the distribution outside current ranges would increase by 15%. Suitable habitats for over 90% of species will be located in the north of their current range, for over 95% of species in higher altitudes (from currently 137–4,124 m to 286–4,396 m in the 2050s or 314–4,448 m in the 2070s), and for over 75% of species in the west of their current range. Also, our results predict two different general responses to the climate change: some species contract their ranges while moving westwards, southwards and to higher altitudes, while others expand their ranges. Finally, our analyses indicate that range dynamics and fragmentation are related, which means that the effects of climate change on Chinese amphibians might be two-folded.



2021 ◽  
Author(s):  
Gabriel Földes ◽  
Marija Mihaela Labat ◽  
Silvia Kohnová ◽  
Miroslav Kandera

<p>The study focuses on future changes in short-term rainfall characteristics. The analysis was performed for the mountainous regions in the northern part of Slovakia at 10 selected climatological stations. The rainfall data are simulated by Community Land Model Scenario which represents the future climate change.  The Community Land Model Scenario is a multidisciplinary project between scientists and several working groups mainly in the USA. The model includes impacts of changes in vegetation on the climate. The scenario has semi- pessimistic characteristics with a predicted global temperature increase by 2.9°C by the 2100. The analysis was performed for five rainfall durations (60, 120, 180, 240 and 1440 minutes) for the historical (1961-2020) and for the future (2071-2100) periods.  The detection of the future changes in short-term rainfall characteristics was made by several methods; for the seasonal changes the Burn´s vector was used, for the trend testing the data the Mann-Kendall test was applied. Results provide information how climate change impacts the short-term rainfall intensities in the mountainous regions of Slovakia.</p>



2021 ◽  
Author(s):  
Elizabeth Fuller ◽  
Claire Scannell ◽  
Victoria Ramsey ◽  
Rebecca Parfitt ◽  
Nicola Golding

<p>In 2018, the UN estimated that around 55% of the world’s population currently live within urban areas, with this value projected to rise to 60% by 2030 (United Nations, 2018). High levels of urbanisation, coupled with an increasing trend in extreme weather under future climate change scenarios, combine to create significant challenges to increasing urban resilience for the future (Masson et al., 2020).</p><p>Urban climate services provide tools to support decision making at a range of scales across the city, from day-to-day operations to informing urban design over longer timescales (Grimmond et al., 2015). Whilst urban climate services may be developed at a range of scales (Grimmond et al., 2020), this presentation looks at a prototype climate service which provides long-term climate change projections at the city-specific scale. The ‘City Pack’ was developed through a process of co-production, in which project development aims to move away from a one-way push of scientific information, to a two-way collaborative process of knowledge construction and sharing (Vincent et al., 2019).</p><p>This ‘City Pack’ service was co-developed by the Met Office and Bristol City Council following an assessment of the Council’s climate information needs. The City Pack comprises of three non-technical factsheets which explain how the climate of Bristol has changed and will continue to change into the 21<sup>st</sup> Century based on the UKCP climate projections. The City Pack’s primary aims are to raise awareness of how a cities climate may change in the future and to inform the development of city resilience whilst also providing a tool to be used by city stakeholders to raise awareness of climate change across the council. The audience for the City Pack therefore includes city officials, city planners and the general public. The Bristol City Pack has since provided an evidence base for the Bristol City Council Climate Change Risk Assessment and informed Bristol’s Climate Strategy. In addition, the City Pack has been used to engage with the council’s wider stakeholders and also as a communication and training tool. As such, whilst the co-production of a climate service may be time and resource intensive, the process may also be rewarded with the production of a highly tailored and user-relevant tool.</p><p>Following the success of the prototype ‘City Pack’ service for Bristol City Council, the Met Office are continuing to produce City Packs for additional cities across the UK, and also in China. The project is seeking to ascertain if services which are co-produced with and bespoke to one set of stakeholders, may provide an equally valuable service for other cities and if so, how can we make these services scalable.</p>



2020 ◽  
Author(s):  
Emanuele Massetti ◽  
Emanuele Di Lorenzo

<p>Estimates of physical, social and economic impacts of climate change are less accurate than usually thought because the impacts literature has largely neglected the internal variability of the climate system. Climate change scenarios are highly sensitive to the initial conditions of the climate system due the chaotic dynamics of weather. As the initial conditions of the climate system are unknown with a sufficiently high level of precision, each future climate scenario – for any given model parameterization and level of exogenous forcing – is only one of the many possible future realizations of climate. The impacts literature usually relies on only one realization randomly taken out of the full distribution of future climates. Here we use one of the few available large scale ensembles produced to study internal variability and an econometric model of climate change impacts on United States (US) agricultural productivity to show that the range of impacts is much larger than previously thought. Different ensemble members lead to significantly different impacts. Significant sign reversals are frequent. Relying only on one ensemble member leads to incorrect conclusions on the effect of climate change on agriculture in most of the US counties. Impacts studies should start using large scale ensembles of future climate change to predict damages. Climatologists should ramp-up efforts to run large ensembles for all GCMs, for at least the most frequently used scenarios of exogenous forcing.</p>



Sign in / Sign up

Export Citation Format

Share Document