The specificity of purine base and nucleoside uptake in promastigotes ofLeishmania braziliensis panamensis

Parasitology ◽  
1982 ◽  
Vol 85 (2) ◽  
pp. 271-282 ◽  
Author(s):  
B. D. Hansen ◽  
J. Perez-Arbelo ◽  
J. F. Walkony ◽  
L. D. Hendricks

SUMMARYPromastigotes ofLeishmania braziliensis panamensisabsorbed the purines adenine, hypoxanthine, adenosine and inosine by a combination of diffusion and mediated components. When the uptake rates for these substrates were corrected for diffusion and compared, the purine bases adenine and hypoxanthine were transported at a significantly slower rate than the purine nucleosides adenosine and inosine. Competitive interactions among those purines tested confirmed the presence of mediated and diffusion components and suggested that three transport loci may be operating (Fig. 6). The first transport locus, designated Locus 1, transported inosine, Locus 2, the purine bases hypoxanthine and adenine and Locus 3, adenosine. In addition, adenine and hypoxanthine inhibited the uptake of one another competitively. A comparison of Kivalues derived from double reciprocal plots of labelled hypoxanthine and adenine uptake in the presence of the unlabelled substrates as inhibitors suggested that adenine has a greater affinity for the transport locus.

1965 ◽  
Vol 42 (2) ◽  
pp. 299-305
Author(s):  
IVAN GOODBODY

1. The evidence for the occurrence of storage excretion in ascidians is reviewed. Most species probably store uric acid or purine bases in some form. 2. The renal concretions of Ascidia nigra and Phallusia mammillata contain 50-60% uric acid, the remainder of the concretion is unidentified but is non-nitrogenous and is not calcium carbonate. In Ascidiella aspersa the concretion is predominantly composed of calcium carbonate and there is no significant quantity of uric acid or purine base. 3. Uric acid is also identified in Molgula manhattensis, Polycarpa obtecta, Pyura vittata and Herdmania momus. 4. Storage excretion probably results from a deficiency in the uricolytic enzyme system. It is concluded that while protein metabolism is ammonotelic, purine metabolism is uricotelic or xanthotelic.


1980 ◽  
Vol 66 (2) ◽  
pp. 205 ◽  
Author(s):  
Brian D. Hansen ◽  
H. Kenneth Sleeman ◽  
Peter W. Pappas

2005 ◽  
Vol 187 (2) ◽  
pp. 791-794 ◽  
Author(s):  
Per Nygaard ◽  
Hans H. Saxild

ABSTRACT In Bacillus subtilis, the expression of genes encoding enzymes and other proteins involved in purine de novo synthesis and salvage is affected by purine bases and phosphoribosylpyrophosphate (PRPP). The transcription of the genes belonging to the PurR regulon is negatively regulated by the PurR protein and PRPP. The expression of the genes belonging to the G-box (XptR) regulon, including the pbuE gene, is negatively regulated by a riboswitch-controlled transcription termination mechanism. The G-box regulon effector molecules are hypoxanthine and guanine. pbuE encodes a purine base efflux pump and is now recognized as belonging to a third purine regulon. The expression of the pbuE gene is positively regulated by a riboswitch that recognizes adenine. Here we show that the expression of pbuE′-lacZ transcriptional fusions are induced by adenine to the highest extent in mutants which do not express a functional PbuE pump. In a mutant defective in the metabolism of adenine, the ade apt mutant, we found a high intracellular level of adenine and constitutive high levels of PbuE. A growth test using a purine auxotroph provided further evidence for the role of PbuE in lowering the intracellular concentration of purine bases, including adenine. Purine analogs also affect the expression of pbuE, which might be of importance for the protection against toxic analogs. In a mutant that overexpresses PbuE, the expression of genes belonging to the PurR regulon was increased. Our findings provide further evidence for important functions of the PbuE protein, such as acting as a pump that lowers the purine base pool and affects the expression of the G-box and PurR regulons, including pbuE itself, and as a pump involved in protection against toxic purine base analogs.


1997 ◽  
Vol 62 (12) ◽  
pp. 1832-1842 ◽  
Author(s):  
Hans P. Rebo ◽  
De Chen ◽  
Marit S. A. Brownrigg ◽  
Kjell Moljord ◽  
Anders Holmen

A novel microbalance technique has been used to study diffusion and adsorption in a commercial HZSM-5 zeolite. This new technique uses an inertial microbalance TEOM (Tapered Element Oscillating Microbalance) to measure mass changes in the zeolite bed. Time resolution as short as 0.1 s, a flow-through design where all the probe molecules see the zeolite bed and high sensitivity allowing zeolite loadings down to a few milligrams are the three most important properties of the TEOM. The probe molecules studied were o-xylene, p-xylene and toluene which were introduced at 303, 373 or 473 K and at partial pressures in the range of 0.2-10 kPa. The inverse characteristic uptakes (D/L2), corrected (D0/L2) and steady-state (Dss/L2) diffusion times are reported. The thermodynamic correction used for D0/L2 calculations almost eliminated the concentration dependence of the diffusivities. The Dss/L2 values were found to be rather unaffected by both temperature (373-473 K) and concentration, suggesting a certain degree of unification for diffusivities. o-Xylene uptake rates in the TEOM were found to be significantly higher than in a gravimetric microbalance under identical conditions, probably as a result of additional mass transfer resistance other than intracrystalline diffusion caused by poor contact between the gas phase and the zeolite in a conventional gravimetric microbalance.


1982 ◽  
Vol 98 (1) ◽  
pp. 221-223 ◽  
Author(s):  
Anna M. Antoniewicz ◽  
P. M. Pisulewski

Urinary allantoin, an end product of purine base metabolism, originates in sheep from three possible sources: exogenous, purine bases of rumen microorganisms and feed purines and ureides, and endogenous, purines catabolized in tissue turnover. Earlier studies suggested that nucleic acid purines of rumen micro-organisms may be a predominant source of urinary allantoin (Antoniewicz, Heinemann & Hanks, 1979, 1981).


1987 ◽  
Vol 7 (1) ◽  
pp. 97-103
Author(s):  
B Ullman ◽  
J Patrick ◽  
K McCartan

A novel type of somatic mutation that causes the expression of a high-affinity purine base permease (B. Aronow, D. Toll, J. Patrick, P. Hollingsworth, K. McCartan, and B. Ullmann, Mol. Cell Biol. 6:2957-2962, 1986) has been inserted into nucleoside transport-deficient S49 cells. Two classes of mutants expressing this nucleobase permease were generated. The first, as exemplified by the AE1HADPAB2 cell line, possessed an augmented capacity to transport low concentrations of the three purine bases, hypoxanthine, guanine, and adenine. The second class of mutants, as typified by the AE1HADPAB5 clone, possessed an augmented capability to translocate low levels of hypoxanthine and guanine, but not adenine. Neither the AE1HADPAB2 nor the AE1HADPAB5 cells could transport nucleosides, suggesting that the expression of the high-affinity base transporter did not reverse the mutation in the nucleoside transport system. The transport of purine bases by both AE1HADPAB2 and AE1HADPAB5 cells was much less sensitive than that by wild-type cells to inhibition by dipyridamole, 4-nitrobenzylthionosine, and N-ethylmaleimide, potent inhibitors of nucleoside and nucleobase transport in wild-type S49 cells. Fusion of the AE1HADPAB2 and AE1HADPAB5 cell lines with wild-type cells indicated that the expression of the high-affinity base transporter behaved in a dominant fashion, while the nucleoside transport deficiency was a recessive trait. These data suggest that the high-affinity purine base transporter of mutant cells and the nucleoside transport function of wild-type cells are products of different genes and that expression of the former probably requires the unmasking or alteration of a specific genetic locus that is silent or different in wild-type cells.


1987 ◽  
Vol 7 (1) ◽  
pp. 97-103 ◽  
Author(s):  
B Ullman ◽  
J Patrick ◽  
K McCartan

A novel type of somatic mutation that causes the expression of a high-affinity purine base permease (B. Aronow, D. Toll, J. Patrick, P. Hollingsworth, K. McCartan, and B. Ullmann, Mol. Cell Biol. 6:2957-2962, 1986) has been inserted into nucleoside transport-deficient S49 cells. Two classes of mutants expressing this nucleobase permease were generated. The first, as exemplified by the AE1HADPAB2 cell line, possessed an augmented capacity to transport low concentrations of the three purine bases, hypoxanthine, guanine, and adenine. The second class of mutants, as typified by the AE1HADPAB5 clone, possessed an augmented capability to translocate low levels of hypoxanthine and guanine, but not adenine. Neither the AE1HADPAB2 nor the AE1HADPAB5 cells could transport nucleosides, suggesting that the expression of the high-affinity base transporter did not reverse the mutation in the nucleoside transport system. The transport of purine bases by both AE1HADPAB2 and AE1HADPAB5 cells was much less sensitive than that by wild-type cells to inhibition by dipyridamole, 4-nitrobenzylthionosine, and N-ethylmaleimide, potent inhibitors of nucleoside and nucleobase transport in wild-type S49 cells. Fusion of the AE1HADPAB2 and AE1HADPAB5 cell lines with wild-type cells indicated that the expression of the high-affinity base transporter behaved in a dominant fashion, while the nucleoside transport deficiency was a recessive trait. These data suggest that the high-affinity purine base transporter of mutant cells and the nucleoside transport function of wild-type cells are products of different genes and that expression of the former probably requires the unmasking or alteration of a specific genetic locus that is silent or different in wild-type cells.


Author(s):  
Vladimir I. Timofeev ◽  
Nadezhda E. Zhukhlistova ◽  
Yuliya A. Abramchik ◽  
Ilya I. Fateev ◽  
Maria A. Kostromina ◽  
...  

Purine nucleoside phosphorylases (EC 2.4.2.1; PNPs) reversibly catalyze the phosphorolytic cleavage of glycosidic bonds in purine nucleosides to generate ribose 1-phosphate and a free purine base, and are key enzymes in the salvage pathway of purine biosynthesis. They also catalyze the transfer of pentosyl groups between purine bases (the transglycosylation reaction) and are widely used for the synthesis of biologically important analogues of natural nucleosides, including a number of anticancer and antiviral drugs. Potent inhibitors of PNPs are used in chemotherapeutic applications. The detailed study of the binding of purine bases and their derivatives in the active site of PNPs is of particular interest in order to understand the mechanism of enzyme action and for the development of new enzyme inhibitors. Here, it is shown that 7-deazahypoxanthine (7DHX) is a noncompetitive inhibitor of the phosphorolysis of inosine by recombinantEscherichia coliPNP (EcPNP) with an inhibition constantKiof 0.13 mM. A crystal ofEcPNP in complex with 7DHX was obtained in microgravity by the counter-diffusion technique and the three-dimensional structure of theEcPNP–7DHX complex was solved by molecular replacement at 2.51 Å resolution using an X-ray data set collected at the SPring-8 synchrotron-radiation facility, Japan. The crystals belonged to space groupP6122, with unit-cell parametersa=b= 120.370,c= 238.971 Å, and contained three subunits of the hexameric enzyme molecule in the asymmetric unit. The 7DHX molecule was located with full occupancy in the active site of each of the three crystallographically independent enzyme subunits. The position of 7DHX overlapped with the positions occupied by purine bases in similar PNP complexes. However, the orientation of the 7DHX molecule differs from those of other bases: it is rotated by ∼180° relative to other bases. The peculiarities of the arrangement of 7DHX in theEcPNP active site are discussed.


1998 ◽  
Vol 180 (3) ◽  
pp. 457-463 ◽  
Author(s):  
Birgitte Stuer-Lauridsen ◽  
Per Nygaard

ABSTRACT In exponentially growing cultures of the extreme halophileHalobacterium halobium and the moderate halophileHaloferax volcanii, growth characteristics including intracellular protein levels, RNA content, and nucleotide pool sizes were analyzed. This is the first report on pool sizes of nucleoside triphosphates, NAD, and PRPP (5-phosphoribosyl-α-1-pyrophosphate) in archaea. The presence of a number of salvage and interconversion enzymes was determined by enzymatic assays. The levels varied significantly between the two organisms. The most significant difference was the absence of GMP reductase activity in H. halobium. The metabolism of exogenous purines was investigated in growing cultures. Both purine bases and nucleosides were readily taken up and were incorporated into nucleic acids. Growth of both organisms was affected by a number of inhibitors of nucleotide synthesis.H. volcanii was more sensitive than H. halobium, and purine base analogs were more toxic than nucleoside analogs. Growth of H. volcanii was inhibited by trimethoprim and sulfathiazole, while these compounds had no effect on the growth of H. halobium. Spontaneous mutants resistant to purine analogs were isolated. The most frequent cause of resistance was a defect in purine phosphoribosyltransferase activity coupled with reduced purine uptake. A single phosphoribosyltransferase seemed to convert guanine as well as hypoxanthine to nucleoside monophosphates, and another phosphoribosyltransferase had specificity towards adenine. The differences in the metabolism of purine bases and nucleosides and the sensitivity to purine analogs between the two halobacteria were reflected in differences in purine enzyme levels. Based on our results, we conclude that purine salvage and interconversion pathways differ just as much between the two archaeal species as among archaea, bacteria, and eukarya.


Sign in / Sign up

Export Citation Format

Share Document