The effect of Toxoplasma gondii and other parasites on activity levels in wild and hybrid Rattus norvegicus

Parasitology ◽  
1994 ◽  
Vol 109 (5) ◽  
pp. 583-589 ◽  
Author(s):  
J. P. Webster

Using both correlational and experimental evidence, the relationship between parasite load and host activity was assessed in brown rats, Rattus norvegicus. Two hypotheses were tested – (1) that parasites with indirect life-cycles, involving transmission between a prey and its predator, will alter the activity of the intermediate host so as to increase its susceptibility to predation by the definitive host and (2) that activity levels in parasitized rats would be increased rather than decreased. Four groups of rats (n = 140) were examined. One group (n = 50) were wild brown rats trapped from 3 UK farmsteads, with naturally occurring parasites. The others were purpose-bred wild/laboratory hybrid rats with experimentally induced parasitic infections of either (n = 15) adult-acquired or (n = 15) congenitally-acquired Toxoplasma gondii (an indirect life-cycle parasite), or (n = 15) Syphacia muris (a direct life-cycle parasite). Uninfected hybrid rats (n = 45), matched for sex, age and weight, served as controls. Rats were housed individually in outdoor cages, and their activities were recorded on video-tapes for 6 non-consecutive 10 h nights. Exercise wheels were also available for the hybrid rats. Out of 6 parasite species detected in the wild rats, T. gondii was the only one which required predation by a definitive host to complete its life-cycle, and was also the only parasite to be associated with higher activity levels in infected than uninfected rats. Hybrid rats infected with T. gondii were also more active than those uninfected, whereas there were no differences in activity levels between S. muris infected and uninfected rats. This study shows that the indirect life-cycle parasite T. gondii can influence the activity of its intermediate host the rat. I suggest that this may facilitate its transmission to the cat definitive host.

Parasitology ◽  
2016 ◽  
Vol 144 (4) ◽  
pp. 464-474 ◽  
Author(s):  
C. LAGRUE ◽  
R. RINNEVALLI ◽  
R. POULIN

SUMMARYA number of parasites with complex life cycles can abbreviate their life cycles to increase the likelihood of reproducing. For example, some trematodes can facultatively skip the definitive host and produce viable eggs while still inside their intermediate host. The resulting shorter life cycle is clearly advantageous when transmission probabilities to the definitive hosts are low. Coitocaecum parvum can mature precociously (progenesis), and produce eggs by selfing inside its amphipod second intermediate host. Environmental factors such as definitive host density and water temperature influence the life-history strategy adopted by C. parvum in their crustacean host. However, it is also possible that information about transmission opportunities gathered earlier in the life cycle (i.e. by cercariae-producing sporocysts in the first intermediate host) could have priming effects on the adoption of one or the other life strategy. Here we document the effects of environmental parameters (host chemical cues and temperature) on cercarial production within snail hosts and parasite life-history strategy in the amphipod host. We found that environmental cues perceived early in life have limited priming effects on life-history strategies later in life and probably account for only a small part of the variation among conspecific parasites. External cues gathered at the metacercarial stage seem to largely override potential effects of the environmental conditions experienced by early stages of the parasite.


Parasitology ◽  
2008 ◽  
Vol 135 (10) ◽  
pp. 1243-1251 ◽  
Author(s):  
C. LAGRUE ◽  
R. POULIN

SUMMARYParasites with complex life cycles have developed numerous and very diverse adaptations to increase the likelihood of completing this cycle. For example, some parasites can abbreviate their life cycles by skipping the definitive host and reproducing inside their intermediate host. The resulting shorter life cycle is clearly advantageous when definitive hosts are absent or rare. In species where life-cycle abbreviation is facultative, this strategy should be adopted in response to seasonally variable environmental conditions. The hermaphroditic trematode Coitocaecum parvum is able to mature precociously (progenesis), and produce eggs by selfing while still inside its amphipod second intermediate host. Several environmental factors such as fish definitive host density and water temperature are known to influence the life-history strategy adopted by laboratory raised C. parvum. Here we document the seasonal variation of environmental parameters and its association with the proportion of progenetic individuals in a parasite population in its natural environment. We found obvious seasonal patterns in both water temperature and C. parvum host densities. However, despite being temporally variable, the proportion of progenetic C. parvum individuals was not correlated with any single parameter. The results show that C. parvum life-history strategy is not as flexible as previously thought. It is possible that the parasite's natural environment contains so many layers of heterogeneity that C. parvum does not possess the ability to adjust its life-history strategy to accurately match the current conditions.


1957 ◽  
Vol 31 (4) ◽  
pp. 203-224 ◽  
Author(s):  
Roy C. Anderson

The evolution of the life cycles of the members of the family Dipetalonematiidae Wehr, 1935 (Filarioidea) is considered in the light of existing knowledge of spirurid nematodes. The hypothesis that the life cycles of the dipetalonematids originated from life cycles similar to those of Draschia megastoma, Habronema muscae and H. microstoma is considered to be incorrect. Alternatively, it is pointed out that in the primitive subfamily Thelaziinae Baylis and Daubney, 1926 there are forms with typical spiruroid life cycles (Rhabdochona ovifilamenta), forms with life cycles approaching those of the dipetalonematids (Thelazia spp.), and forms with life cycles intermediate between these two (Oxyspirura spp.). It is suggested that intestinal species similar to Rhabdochona gave rise to the more specialized spiruroids and forms that left the gut (Oxyspirura, Thelazia) gave rise to the dipetalonematids.The dipetalonematids are believed to have originated from nematodes resembling the species of Thelazia and having life cycles like those of T. rhodesii, T. skrjabini and T. gulosa. Some of these worms established themselves in subcutaneous tissues. Like Parafilaria multipapillosa, they released their eggs through a break in the skin of the definitive host, thus causing a skin lesion that attracted various haematophagous arthropods which finally became involved as intermediate hosts in the life cycle. Certain species like the members of Parafilaria and Stephanofilaria (?) came to rely upon intermediate hosts that were unable to break the skin of the definitive host (Musca) and cutaneous lesions became permanent features of their life cycles. Other species became dependent upon intermediate hosts that could puncture the skin (mosquitoes, simuliids etc.) and skin lesions became unnecessary to the life cycle. The larvae of these worms then began to spread into the tissues of the skin, as found in Stephanofilaria, Onchocerca, and some species of Dipetalonema, and the infective larvae developed the ability to penetrate into the wound made by the intermediate host and perhaps, in some cases, the intact skin. Ultimately the larvae of some species habitually entered, or were deposited into, the blood stream and the adult worms were then free to colonize the vertebrate body as their larvae would then be available to the intermediate host no matter where the latter fed on the body of the definitive host; this group of worms gave rise to the many members of the family Dipetalonematidae.The family Filariidae Claus, 1883 is briefly reviewed in the light of the above hypothesis. It is pointed out that many species, e.g. Diplotriaeninae Skrjabin, 1916, live in the air sacs of reptiles and birds and probably have life cycles similar to that of Diplotriaenoides translucidus, i.e. the eggs pass through the lungs, up the trachea and out in the faeces. It is thought that these forms may represent a separate line of evolution from that which gave rise to the Dipetalonematidae. Certain genera (Lissonema, Aprocta), occurring in the orbits of birds, probably have life cycles like Thelazia or Oxyspirura. Many other genera occurring in superficial muscles and subcutaneous tissues (Squamofilaria, Ularofilaria, Tetracheilonema, Pelecitus, Monopetalonema) may release their eggs through some sort of skin lesion. Studies on these forms are urgently needed as the details of their life cycles may shed fresh light on the origins of the more specialized filarioids.


Parasitology ◽  
2011 ◽  
Vol 138 (9) ◽  
pp. 1183-1192 ◽  
Author(s):  
KRISTIN K. HERRMANN ◽  
ROBERT POULIN

SUMMARYEach transmission event in complex, multi-host life cycles create obstacles selecting for adaptations by trematodes. One such adaptation is life cycle abbreviation through progenesis, in which the trematode precociously matures and reproduces within the second intermediate host. Progenesis eliminates the need for the definitive host and increases the chance of life cycle completion. However, progenetic individuals face egg-dispersal challenges associated with reproducing within metacercarial cysts in the tissues or body cavity of the second intermediate host. Most progenetic species await host death for their eggs to be released into the environment. The present study investigated temporal variation of progenesis in Stegodexamene anguillae in one of its second intermediate fish hosts and the effect of the fish's reproductive cycle on progenesis. The study involved monthly sampling over 13 months at one locality. A greater proportion of individuals became progenetic in the gonads of female fish hosts. Additionally, progenesis of worms in the gonads was correlated with seasonal daylight and temperature changes, major factors controlling fish reproduction. Host spawning events are likely to be an avenue of egg dispersal for this progenetic species, with the adoption of progenesis being conditional on whether or not the parasite can benefit from fish spawning.


2005 ◽  
Vol 6 (1) ◽  
pp. 41-61 ◽  
Author(s):  
Dolores E. Hill ◽  
Sreekumar Chirukandoth ◽  
J. P. Dubey

AbstractToxoplasma gondiiis a coccidian parasite which utilizes felids as definitive hosts, and which has an unusually wide intermediate host range. The parasite was initially described by Nicolle and Manceaux in 1908 from the rodent,Ctenodactylus gundi. Infection withT. gondiiis one of the most common parasitic infections of man and other warm-blooded animals. It has been found worldwide from Alaska to Australia. Nearly one-third of humanity has been exposed to this parasite; serologic surveys indicate thatT. gondiiinfections are common in wild carnivores, including pigs, bears, felids, fox, raccoons, and skunks. Clinical and subclinical toxoplasmosis has been reported from wild cervids, ungulates, marsupials, monkeys, and marine mammals. Southern sea otter populations have been severely impacted byToxoplasmainfections.


Parasitology ◽  
2005 ◽  
Vol 131 (1) ◽  
pp. 133-140 ◽  
Author(s):  
K. TAKUMI ◽  
J. VAN DER GIESSEN

On the basis of high prevalences of Echinococcus multilocularis in the growing fox populations in Central Europe, its total biomass may have increased significantly in the past 20 years. E. multilocularis is now also found in areas outside the known endemic area in Central Europe. Therefore, E. multilocularis, the causative agent of a serious parasitic zoonosis, might be of major concern for public health and a challenge to control. Some experimental field trials to control E. multilocularis using an anti-worm drug reduced parasite burden in a contaminated region during the control campaign, but failed to eradicate the parasite completely. It was our aim to develop a mathematical model describing the biomass of egg, larval, and adult worm stages of the E. multilocularis life-cycle, and simulate a hypothetical control campaign. Additionally, we derived the reproduction number of this parasite and explored conditions for the persistence of the parasite's life-cycle. Our model shows that while control campaigns rapidly reduce the worm burden in the definitive host, and consequently eggs in the environment, the pool of larvae in the intermediate host remains large. The parasite's life-cycle persists in a region where prevalence in the intermediate host is low (∼1%). Therefore, we conclude that the parasite is likely to re-emerge if control is discontinued on the basis of reduced worm population. Continued treatment of the definitive host is required to eradicate the larval stage of the parasite from the intermediate host population.


Parasitology ◽  
1983 ◽  
Vol 87 (2) ◽  
pp. 343-369 ◽  
Author(s):  
Eric S. Loker

SUMMARYAvailable data in the literature pertaining to the life-history characteristics of all known species of mammalian schistosomes have been gathered, and correlations between such variables as length of pre-patent period, adult worm size, rate of progeny production and progeny size have been explored. Accommodation of the schistosome life-cycle to the constraints imposed by certain host characteristics such as life-expectancy and size is discussed. Of the 23 known species of mammalian schistosomes, 20 species apparently rely to a major extent on relatively large-bodied and long-lived mammals such as primates, ungulates and proboscideans for their transmission. Only 1 species,Schistosomatium douthitti, is exclusively dependent on rodents for its transmission.S. douthittiattains maturity within its definitive host faster than any other mammalian schistosome, and is the only species known to be capable of producing viable eggs by facultative parthenogenesis. For all species of mammalian schistosomes, adult worm size, as estimated by female length, is positively correlated with the number of uterine eggs contained within the female (r= 0·682). For the 7 species for which data exist, rate of egg production/worm pair/day is positively correlated with uterine egg counts (r= 0·873) and inversely correlated with egg length (r= −0·787) and miracidium length (r= −0·953). Length of the pre-patent period is positively correlated with egg length (r= 0·503). With respect to the molluscan host, the number of cercariae produced by snails is positively correlated with the shell size of the snail (r= 0·657). For the 5 species for which data exist, the rate of egg production is inversely correlated with shell size of the intermediate host (r= −0·955) and the common logarithm of the number of cercariae produced (r= −0·893). Comparisons between species suggest that exceptionally low rates of cercariae production in the intermediate host may be compensated for by rapid rates of egg production in the definitive host, implying a degree of integration in the schistosome life-cycle not previously appreciated. Most species of mammalian schistosomes have long-lived definitive hosts, and snail hosts capable of producing many cercariae; compensatory relationships are therefore less obvious in such species. Additional quantitative data on all aspects of schistosome life-histories, particularly rate and duration of egg production, are needed to confirm or refute the relationships discussed above.


Parasitology ◽  
2002 ◽  
Vol 124 (6) ◽  
pp. 625-629 ◽  
Author(s):  
A. LEVSEN ◽  
P. J. JAKOBSEN

This paper describes the ability of the Asian fish nematode Camallanuscotti to carry out both heteroxeny, i.e. an indirect life-cycle using copepods as intermediate host, and monoxeny, i.e. direct infection and development in the definitive fish host. C. cotti occurs naturally in various freshwater teleosts in Asia. During the past decades it has been disseminated into closed or semi-closed aquaculture systems and aquaria around the world, mainly due to the ornamental fish trade. Under such conditions the species may frequently face a bottleneck situation with regard to the availability of copepods. It is known that C. cotti may reproduce and persist in copepod-free aquaria for several months. In order to investigate whether C. cotti has selected towards monoxeny in water systems lacking copepods, in contrast to the opposite selection pressure when copepods are present, 2 separate infection trials were run. It was shown that the parasite can infect the fish host both indirectly via copepods, and directly. However, C. cotti has significantly higher fitness, expressed as survival to maturity, when transmitted indirectly compared to the direct transmission mode. We suggest that the ability of aquarium populations of C. cotti to carry out a direct life-cycle is favoured by selection in order to avoid extinction whenever copepods are absent. It still remains unknown, however, whether the parasite shows the same characteristics in the wild.


Parasitology ◽  
1998 ◽  
Vol 117 (2) ◽  
pp. 185-192 ◽  
Author(s):  
A. J. LYMBERY

Species of Echinococcus (Cestoda: Taeniidae) require 2 mammalian hosts to complete their life-cycle; a carnivorous definitive host, and a herbivorous or omnivorous intermediate host. For most species of Echinococcus, the definitive host range is restricted to 1 or a few species, but the intermediate host range is very broad. Programmes to control hydatid disease attempt to break the life-cycle of the parasite and their effectiveness is therefore enhanced by an understanding of local patterns of transmission. Although it is known that the rostellar hooks of protoscoleces may be influenced by the species of intermediate host in which they develop, the application of this knowledge to infer transmission cycles has been limited, because the intermediate host effect has not been isolated from other environmental and genetic components of phenotypic variance. This study presents a method for separating these potentially confounding genetic and environmental effects, by combining quantitative genetic analyses of hook traits with data on population structure from neutral genetic markers. The method was applied to 5 hook traits (hook number, total length of large hooks, blade length of large hooks, total length of small hooks, blade length of small hooks) measured on protoscoleces from 2 intermediate host types (sheep and macropod marsupials) in Australia. Although genetic variance was similar for all traits, they differed markedly in the extent of environmental variance attributed to development in different host types. Total length of small hooks was the trait most affected, with 49–60% of phenotypic variance being explained by environmental differences between intermediate host species. Blade length of small hooks was least affected, with none of the phenotypic variance due to intermediate host origin. These data suggest that hook measurements of adult worms from naturally infected definitive hosts could be used to determine the intermediate host species from which infection was acquired, if the appropriate traits are measured.


2018 ◽  
Vol 2 ◽  
pp. e25604
Author(s):  
Susan Perkins

Although they are hyperdiverse and intensively studied, parasites present major challenges when it comes to phylogenetics, taxonomy, and biodiversity informatics. The collection of any parasitic organism entails the linking of at least two specimens - the parasite and the host. If the parasite has a complex life cycle, then this becomes further complicated by requiring the linking of three or more hosts, such as the parasite, its intermediate host (vector) and its definitive host(s). Parasites are sometimes collected as byproduct of another collection event and are not studied immediately - which has the potential to disconnect them further in terms of information content and continuity- and the converse if also common - parasites can be collected by parasitologists, who do not necessarily take host vouchers or incorporate host taxonomy, let alone other metadata for these events. Using the specific example of the malaria parasites (Order Haemosporida) I will present examples of the specific challenges that have accompanied the study of these parasites including issues of delimiting species, phylogenetic study, including genetic oddities that are unique to these organisms, and taxonomic quandries that we now find ourselves in, along with other problems with maintaining continuity of information in a group that is both diverse biologically and important medically.


Sign in / Sign up

Export Citation Format

Share Document