Digestion in the tick,Argas persicus, Oken.

Parasitology ◽  
1964 ◽  
Vol 54 (3) ◽  
pp. 423-440 ◽  
Author(s):  
R. J. Tatchell

1.Studies on the histological changes during digestion in Argas persicus reveal that the ingestion of blood is accompanied by the destruction of the existing gut epithelial cells.2.The blood remains unlysed for 2–3 days while a new epithelium develops which contains cells that secrete a saliva-fast PAS-positive colloid that causes haemolysis.3.Other epithelial cells remove the freed erythrocytic nuclei by phagocytosis.4.Most of the gut cells then absorb protein from the lumen and intracellular digestion takes place leaving pure haematin granules as the waste product of the digestion of haemoglobin.5.After the initial rapid phase of digestion only relatively few cells show signs of absorptive and digestive activity.6.Absorption of protein is accompanied by increased alkaline phosphatase activity in the microvilli of the cell border; this activity is lost once absorption finishes and digestion begins.7.Strong aminopeptidase activity can be demonstrated at the border of some of the protein vacuoles.8.In vitro tests show that the gut proteinase is active only in the acid range with peaks at pH 2·6 and 3·8 and has a Km of 0·32 % with bovine serum albumin as substrate.9.In vivo data show that digestion, after haemolysis has occurred, takes place in two phases; the first is rapid and lasts approximately 1–2 weeks and is followed by the second phase which is slow and remains constant until the next blood feed.10.The proportion of the blood meal which remains after the rapid phase of digestion is determined by the sex and developmental stage of the tick and within each category it is constant and serves, in the absence of significant fat and glycogen reserves, as a food reserve.

2002 ◽  
Vol 157 (7) ◽  
pp. 1139-1149 ◽  
Author(s):  
Jordan W. Raff ◽  
Kim Jeffers ◽  
Jun-yong Huang

In Drosophila cells cyclin B is normally degraded in two phases: (a) destruction of the spindle-associated cyclin B initiates at centrosomes and spreads to the spindle equator; and (b) any remaining cytoplasmic cyclin B is degraded slightly later in mitosis. We show that the APC/C regulators Fizzy (Fzy)/Cdc20 and Fzy-related (Fzr)/Cdh1 bind to microtubules in vitro and associate with spindles in vivo. Fzy/Cdc20 is concentrated at kinetochores and centrosomes early in mitosis, whereas Fzr/Cdh1 is concentrated at centrosomes throughout the cell cycle. In syncytial embryos, only Fzy/Cdc20 is present, and only the spindle-associated cyclin B is degraded at the end of mitosis. A destruction box–mutated form of cyclin B (cyclin B triple-point mutant [CBTPM]–GFP) that cannot be targeted for destruction by Fzy/Cdc20, is no longer degraded on spindles in syncytial embryos. However, CBTPM–GFP can be targeted for destruction by Fzr/Cdh1. In cellularized embryos, which normally express Fzr/Cdh1, CBTPM–GFP is degraded throughout the cell but with slowed kinetics. These findings suggest that Fzy/Cdc20 is responsible for catalyzing the first phase of cyclin B destruction that occurs on the mitotic spindle, whereas Fzr/Cdh1 is responsible for catalyzing the second phase of cyclin B destruction that occurs throughout the cell. These observations have important implications for the mechanisms of the spindle checkpoint.


1982 ◽  
Vol 101 (1) ◽  
pp. 5-9 ◽  
Author(s):  
Antonino Barbarino ◽  
Laura De Marinis ◽  
Antonio Mancini ◽  
Ofa Makhoul

Abstract. Recent in vitro studies have demonstrated that Ca2+ plays an essential role in gonadotrophin-releasing hormone (GnRH)-stimulated luteinizing hormone (LH) release. In vivo, we have previously shown that verapamil, a substance known to inhibit calcium entry into cells, is capable of inhibiting basal gonadotrophin release as well as the release of luteinizing hormone and follicle-stimulating hormone (FSH) in response to an iv bolus of GnRH. We have examined the effects of calcium antagonists on the two phases of pituitary LH release in response to constant GnRH infusion in normal subjects. In 6 men, constant infusion of GnRH (0.2 μg/min × 4 h) resulted in the expected biphasic LH response, with an initial rapid release of LH during the first hour of infusion, followed by a second phase release during the subsequent 3 h. When verapamil (5 mg/h) was infused together with GnRH over a 4 h period, a significant decline of the rapid as well as delayed release of pituitary LH occurred. During the calcium antagonist infusion FSH release was also inhibited, indicating that Ca2+ is also important for the release of this hormone. Our data demonstrate that Ca2+ plays an essential role in the mechanism of GnRH action on both phases of LH release and the release of FSH in normal subjects.


1993 ◽  
Vol 21 (2) ◽  
pp. 191-195 ◽  
Author(s):  
Knut-Jan Andersen ◽  
Erik Ilsø Christensen ◽  
Hogne Vik

The tissue culture of multicellular spheroids from the renal epithelial cell line LLC-PK1 (proximal tubule) is described. This represents a biological system of intermediate complexity between renal tissue in vivo and simple monolayer cultures. The multicellular structures, which show many similarities to kidney tubules in vivo, including a vectorial water transport, should prove useful for studying the potential nephrotoxicity of drugs and chemicals in vitro. In addition, the propagation of renal epithelial cells as multicellular spheroids in serum-free culture may provide information on the release of specific biological parameters, which may be suppressed or masked in serum-supplemented media.


2007 ◽  
Vol 67 (9) ◽  
pp. 4364-4372 ◽  
Author(s):  
Mathew Casimiro ◽  
Olga Rodriguez ◽  
Llana Pootrakul ◽  
Maral Aventian ◽  
Nadia Lushina ◽  
...  

1984 ◽  
Vol 30 (3) ◽  
pp. 381-388 ◽  
Author(s):  
B. R. Merrell ◽  
R. I. Walker ◽  
S. W. Joseph

The initial interaction and adherence of Vibrio parahemolyticus to epithelial tissue culture cells, human buccal epithelial cells, and the ileal mucosa of mice were studied. Using scanning electron microscopy, adherent bacteria were observed only on degenerating human embryonic intestinal, HeLa, and buccal cells; healthy normal cells were devoid of bacteria. Sheared V. parahaemolyticus, i.e., lacking flagella, did not adhere to either normal or degenerating tissue cells. Neither ultraviolet-inactivated organisms nor cell-free culture supernate affected the epithelial cells. Similar findings were observed on the mucosa of the ileum in mice inoculated with V. parahaemolyticus. It appears that V. parahaemolyticus possesses a cytotoxic factor which alters epithelial cells. This factor appears to be closely associated with viable organisms and may be a functional element in the adherence process of flagellated V. parahaemolyticus to mammalian epithelial cells.


2012 ◽  
Vol 130 (6) ◽  
pp. 1375-1383 ◽  
Author(s):  
Jin-Ah Park ◽  
Asma S. Sharif ◽  
Daniel J. Tschumperlin ◽  
Laurie Lau ◽  
Rachel Limbrey ◽  
...  

1984 ◽  
Vol 4 (12) ◽  
pp. 1009-1015 ◽  
Author(s):  
J. P. Bali ◽  
H. Mattras ◽  
A. Previero ◽  
M. A. Coletti-Previero

Rat blood was shown to contain an aminopeptidase which rapidly hydrolyses short peptides containing an aromatic amino acid as N-terminal residue. Using tetragastrin (Trp-Met-Asp-PheNH 2) as substrate, we showed that some amino acid hydroxamates inhibit rat aminopeptidase activity ‘in vitro’ in the following order: HTrpNHOH > HPheNHOH ≫ HAIaNHOH. The same hydroxamates markedly enhanced the biological activity of tetragastrin ‘in vivo’. The amplification of the secretory effect, correlated with the amount of the hydroxamate used, strongly suggests that these compounds can stabilize a number of active peptides in vivo by inhibiting their proteolytic degradation.


Sign in / Sign up

Export Citation Format

Share Document