scholarly journals The roles of Fzy/Cdc20 and Fzr/Cdh1 in regulating the destruction of cyclin B in space and time

2002 ◽  
Vol 157 (7) ◽  
pp. 1139-1149 ◽  
Author(s):  
Jordan W. Raff ◽  
Kim Jeffers ◽  
Jun-yong Huang

In Drosophila cells cyclin B is normally degraded in two phases: (a) destruction of the spindle-associated cyclin B initiates at centrosomes and spreads to the spindle equator; and (b) any remaining cytoplasmic cyclin B is degraded slightly later in mitosis. We show that the APC/C regulators Fizzy (Fzy)/Cdc20 and Fzy-related (Fzr)/Cdh1 bind to microtubules in vitro and associate with spindles in vivo. Fzy/Cdc20 is concentrated at kinetochores and centrosomes early in mitosis, whereas Fzr/Cdh1 is concentrated at centrosomes throughout the cell cycle. In syncytial embryos, only Fzy/Cdc20 is present, and only the spindle-associated cyclin B is degraded at the end of mitosis. A destruction box–mutated form of cyclin B (cyclin B triple-point mutant [CBTPM]–GFP) that cannot be targeted for destruction by Fzy/Cdc20, is no longer degraded on spindles in syncytial embryos. However, CBTPM–GFP can be targeted for destruction by Fzr/Cdh1. In cellularized embryos, which normally express Fzr/Cdh1, CBTPM–GFP is degraded throughout the cell but with slowed kinetics. These findings suggest that Fzy/Cdc20 is responsible for catalyzing the first phase of cyclin B destruction that occurs on the mitotic spindle, whereas Fzr/Cdh1 is responsible for catalyzing the second phase of cyclin B destruction that occurs throughout the cell. These observations have important implications for the mechanisms of the spindle checkpoint.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 118-118
Author(s):  
Danielle C Bongero ◽  
Luca Paoluzzi ◽  
Enrica Marchi ◽  
Neisa Roberto ◽  
Rafael Escandon ◽  
...  

Abstract Abstract 118 A mitotic spindle target that has emerged as unique and potentially restricted to the mitotic spindle is Eg5, also known as the kinesin spindle protein (KSP). SB-743921 induces mitotic spindle dysfunction and cell cycle arrest by inhibiting Eg5. Preliminary Phase 1 studies of SB-743921 have demonstrated that this compound is not associated with any neuropathy like other anti-mitotic agents. These studies have also demonstrated a potential signal in patients with relapsed and refractory lymphoma. We investigated the efficacy of SB-743921 in aggressive B-cell lymphomas to evaluate effectiveness and tolerability in germinal center (GCB) and post germinal center (ABC) diffuse large B-cell lymphomas (DLBCL). For cytotoxicity assays, luminescent cell viability was performed using CellTiter-Glo™ followed by acquisition with Biotek Synergy HT. The IC50s were calculated using the Calcusyn software (Biosoft). Cell Cycle was assessed by staining with Vybrant DyeCycle Green (Invitrogen) followed by FACSCalibur acquisition. Whole cell lysate proteins were extracted and quantified according to Bradford assay. After electrophoresis on a gradient 4–20% SDS-PAGE gels the proteins were transferred to nitrocellulose membrane. After blocking and incubation with the primary and the secondary antibodies, the chemiluminescent agent was added and the x-ray films were exposed to the membranes. In vivo experiments were performed with five to 7-week-old severe combined immunodeficiency (SCID) beige mice (Taconic Laboratories, Germantown, NY) injected with 1 × 107 Ly1-DLBCL cells on the flank via a subcutaneous (SQ) route. When tumor volumes approached 80 mm3, mice were separated into cohorts of ten mice each. Tumors were assessed using the two largest perpendicular axes (l, length; w, width) as measured with standard calipers. Tumor volume was calculated using the formula 4/3 r3, where r=(l + w) / 4. Tumor-bearing mice were assessed for weight loss and tumor volume at least twice weekly. The IC50 values for SB-743921 across a panel of different DLBCL lines are listed in table 1. Cell cycle analysis showed that compared to the untreated group, after treatment with 100nM of SB 743921 the percentage of GCB cells in G2/M phase increased from 17.6% to 40.3% (+129%) in Ly7, 23.9% to 40.7 % (+70%) in Sudhl6 and from 17.55% to 32.4% (+85%) in Ly1. In comparison, the percent increase of cells in G2/M for the ABC lines was statistically less (p-value 0.001). For example, Ly10 increased from 15% to 27.6% (+45%), Riva from 29.3% to 36.95% (+26%) and Sudhl2 from 22.6% to 27.6% (+22%). Immunoblot analysis of DLBCL cells treated with SB-743921 probed for Eg5, CyclinB1, and phosphorylated BubR1 revealed that although all cells demonstrated a measurable increase in Eg5, the total Eg5 present varied from cell line to cell line. The In vivo xenograft experiment was conducted with the GCB Ly1 cell line and consisted of 4 cohorts; one control and 3 treatments with doses of 2.5 mg/kg, 5 mg/kg and 10 mg/kg. SB-743921 was administered by the intraperitoneal route on days 1, 5, and 9 on a 23 day cycle for 2 cycles. The graph below displays the inhibition of tumor growth in the cohorts after treatment with SB-74321. All 3 cohorts had a p-value of <0.001 relative to the control. In conclusion, SB-743921 is promising as a single agent for treatment of DLBCL. Future studies exploring the specific cell cycle features of different cell lines with respect to their check-point control will afford new opportunities to better understand the mechanisms of increased resistance in ABC compared to GCB. The data suggests SB 743921 overall is effective in the treatment of DLBCL both in vitro and in vivo. Further studies exploring potential synergistic interactions with conventional chemotherapeutic agents as well as establishing the most effective treatment schedules for the agent may provide a new approach to treating these diseases. Disclosures: Escandon: Cytokinetics: Employment. Wood:Cytokinetics: Employment. O'Connor:Millennium Pharmaceuticals, Inc.: Membership on an entity's Board of Directors or advisory committees, Research Funding.


Parasitology ◽  
1964 ◽  
Vol 54 (3) ◽  
pp. 423-440 ◽  
Author(s):  
R. J. Tatchell

1.Studies on the histological changes during digestion in Argas persicus reveal that the ingestion of blood is accompanied by the destruction of the existing gut epithelial cells.2.The blood remains unlysed for 2–3 days while a new epithelium develops which contains cells that secrete a saliva-fast PAS-positive colloid that causes haemolysis.3.Other epithelial cells remove the freed erythrocytic nuclei by phagocytosis.4.Most of the gut cells then absorb protein from the lumen and intracellular digestion takes place leaving pure haematin granules as the waste product of the digestion of haemoglobin.5.After the initial rapid phase of digestion only relatively few cells show signs of absorptive and digestive activity.6.Absorption of protein is accompanied by increased alkaline phosphatase activity in the microvilli of the cell border; this activity is lost once absorption finishes and digestion begins.7.Strong aminopeptidase activity can be demonstrated at the border of some of the protein vacuoles.8.In vitro tests show that the gut proteinase is active only in the acid range with peaks at pH 2·6 and 3·8 and has a Km of 0·32 % with bovine serum albumin as substrate.9.In vivo data show that digestion, after haemolysis has occurred, takes place in two phases; the first is rapid and lasts approximately 1–2 weeks and is followed by the second phase which is slow and remains constant until the next blood feed.10.The proportion of the blood meal which remains after the rapid phase of digestion is determined by the sex and developmental stage of the tick and within each category it is constant and serves, in the absence of significant fat and glycogen reserves, as a food reserve.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3830-3830
Author(s):  
Gullu Gorgun ◽  
Elisabetta Calabrese ◽  
Teru Hideshima ◽  
Jeffrey Ecsedy ◽  
Giada Bianchi ◽  
...  

Abstract Abstract 3830 Poster Board III-766 Multiple myeloma (MM) is an incurable bone marrow derived plasma cell malignancy. Despite significant improvements in treating patients suffering from this disease, MM remains uniformly fatal due to intrinsic or acquired drug resistance. Thus, additional modalities for treating MM are required. Targeting cell cycle progression proteins provides such a novel treatment strategy. Here we assess the in vivo and in vitro anti-MM activity of MLN8237, a small molecule Aurora A kinase (AURKA) inhibitor. AURKA is a mitotic kinase that localizes to centrosomes and the proximal mitotic spindle, where it functions in mitotic spindle formation and in regulating chromatid congression and segregation. In MM, increased AURKA gene expression has been correlated with centrosome amplification and a worse prognosis; thus, inhibition of AURKA in MM may prove to be therapeutically beneficial. Here we show that AURKA protein is highly expressed in eight MM cell lines and primary patient MM cells. The affect of AURKA inhibition was examined using cytotoxicity (MTT viability) and proliferation (3[H]thymidine incorporation) assays after treatment of these cell lines and primary cells with MLN8237 (0.0001 μM – 4 μM) for 24, 48 and 72h Although there was no significant inhibition of cell viability and proliferation at 24h, a marked effect on both viability and proliferation occurred after 48 and 72h treatment at concentrations as low as 0.01 μM. Moreover, MLN8237 inhibits cell growth and proliferation of primary MM cells and cell lines even in the presence of bone marrow stromal cells (BMSCs) or cytokines IL-6 and IGF1. Similar experiments revealed that MLN8237 did not induce cytotoxicity in normal peripheral blood mononuclear cells (PBMCs) as measured by MTT assay, but did inhibit proliferation at 48 and 72h, as measured by the 3[H]thymidine incorporation assay. To delineate the mechanisms of cytotoxicity and growth inhibitory activity of MLN8237, apoptotic markers and cell cycle profiles were examined in both MM cell lines and primary MM cells. Annexin V and propidium iodide staining of MM cell lines cultured in the presence or absence of MLN8237 (1 μM) for 24, 48 and 72h demonstrated apoptosis, which was further confirmed by increased cleavage of PARP, capase-9, and caspase-3 by immunoblotting. In addition, MLN8237 upregulated p53-phospho (Ser 15) and tumor suppressor genes p21 and p27. Cell cycle analysis demonstrated that MLN8237 treatment induces an accumulation of tetraploid cells by abrogating G2/M progression. We next determined whether combining MLN8237 with conventional (melphalan, doxorubucin, dexamethasone) and other novel (VELCADE®) therapeutic agents elicited synergistic/additive anti-MM activity by isobologram analysis using CalcuSyn software. Combining MLN8237 with melphalan, dexamethasone, or VELCADE® induces synergistic/additive anti-MM activity against MM cell lines in vitro (p≤0.05, CI<1). To confirm in vivo anti-MM effects of MLN8237, MM.1S cells were injected s.c. into g-irradiated CB-17 SCID mice (n=40, 10 mice EA group). When tumors were measurable (>100 mm3), mice were treated with daily oral doses of vehicle alone or 7.5mg/kg, 15mg/kg, 30mg/kg MLN8237 for 21 days. Overall survival (defined as time between initiation of treatment and sacrifice or death) was compared in vehicle versus- MLN8237- treated mice by Kaplan-Meier method. Tumor burden was significantly reduced (p=0.02) and overall survival was significantly increased (p=0.02, log-rank test) in animals treated with 30mg/kg MLN8237. In vivo anti-MM effects of MLN8237 were further validated by performing TUNEL apoptosis-cell death assay in tumor tissues excised from control or treated animals. Importantly, a significant dose-related increase in apoptotic cells was observed in tumors from animals that received MLN8237 versus controls. These results suggest that MLN8237 represents a promising novel targeted therapy in MM. Disclosures: Ecsedy: Millennium Pharmaceutical: Employment. Munshi:Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees. Richardson:Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees. Anderson:Millennium: Research Funding; Novartis: Research Funding; Celgene: Research Funding.


2002 ◽  
Vol 13 (6) ◽  
pp. 2016-2030 ◽  
Author(s):  
Mitsuru Okuwaki ◽  
Masafumi Tsujimoto ◽  
Kyosuke Nagata

Nucleophosmin/B23 is a nucleolar phosphoprotein. It has been shown that B23 binds to nucleic acids, digests RNA, and is localized in nucleolar granular components from which preribosomal particles are transported to cytoplasm. The intracellular localization of B23 is significantly changed during the cell cycle. Here, we have examined the cellular localization of B23 proteins and the effect of mitotic phosphorylation of B23.1 on its RNA binding activity. Two splicing variants of B23 proteins, termed B23.1 and B23.2, were complexed both in vivo and in vitro. The RNA binding activity of B23.1 was impaired by hetero-oligomer formation with B23.2. Both subtypes of B23 proteins were phosphorylated during mitosis by cyclin B/cdc2. The RNA binding activity of B23.1 was repressed through cyclin B/cdc2-mediated phosphorylation at specific sites in B23. Thus, the RNA binding activity of B23.1 is stringently modulated by its phosphorylation and subtype association. Interphase B23.1 was mainly localized in nucleoli, whereas B23.2 and mitotic B23.1, those of which were incapable of binding to RNA, were dispersed throughout the nucleoplasm and cytoplasm, respectively. These results suggest that nucleolar localization of B23.1 is mediated by its ability to associate with RNA.


1984 ◽  
Vol 99 (1) ◽  
pp. 155-165 ◽  
Author(s):  
T Schedl ◽  
T G Burland ◽  
K Gull ◽  
W F Dove

The temporal relationship between tubulin expression and the assembly of the mitotic spindle microtubules has been investigated during the naturally synchronous cell cycle of the Physarum plasmodium. The cell cycle behavior of the tubulin isoforms was examined by two-dimensional gel electrophoresis of proteins labeled in vivo and by translation of RNA in vitro. alpha 1-, alpha 2-, beta 1-, and beta 2-tubulin synthesis increases coordinately until metaphase, and then falls, with beta 2 falling more rapidly than beta 1. Nucleic acid hybridization demonstrated that alpha- and beta-tubulin RNAs accumulate coordinately during G2, peaking at metaphase. Quantitative analysis demonstrated that alpha-tubulin RNA increases with apparent exponential kinetics, peaking with an increase over the basal level of greater than 40-fold. After metaphase, tubulin RNA levels fall exponentially, with a short half-life (19 min). Electron microscopic analysis of the plasmodium showed that the accumulation of tubulin RNA begins long before the polymerization of mitotic spindle microtubules. By contrast, the decay of tubulin RNA after metaphase coincides with the depolymerization of the spindle microtubules.


1982 ◽  
Vol 101 (1) ◽  
pp. 5-9 ◽  
Author(s):  
Antonino Barbarino ◽  
Laura De Marinis ◽  
Antonio Mancini ◽  
Ofa Makhoul

Abstract. Recent in vitro studies have demonstrated that Ca2+ plays an essential role in gonadotrophin-releasing hormone (GnRH)-stimulated luteinizing hormone (LH) release. In vivo, we have previously shown that verapamil, a substance known to inhibit calcium entry into cells, is capable of inhibiting basal gonadotrophin release as well as the release of luteinizing hormone and follicle-stimulating hormone (FSH) in response to an iv bolus of GnRH. We have examined the effects of calcium antagonists on the two phases of pituitary LH release in response to constant GnRH infusion in normal subjects. In 6 men, constant infusion of GnRH (0.2 μg/min × 4 h) resulted in the expected biphasic LH response, with an initial rapid release of LH during the first hour of infusion, followed by a second phase release during the subsequent 3 h. When verapamil (5 mg/h) was infused together with GnRH over a 4 h period, a significant decline of the rapid as well as delayed release of pituitary LH occurred. During the calcium antagonist infusion FSH release was also inhibited, indicating that Ca2+ is also important for the release of this hormone. Our data demonstrate that Ca2+ plays an essential role in the mechanism of GnRH action on both phases of LH release and the release of FSH in normal subjects.


2019 ◽  
Vol 19 (3) ◽  
pp. 365-374 ◽  
Author(s):  
Yang Liu ◽  
Jingyin Zhang ◽  
Shuyun Feng ◽  
Tingli Zhao ◽  
Zhengzheng Li ◽  
...  

Objective: The aim of this study is to investigate the inhibitory effect of camptothecin derivative 3j on Non-Small Cell Lung Cancer (NSCLCs) cells and the potential anti-tumor mechanisms. Background: Camptothecin compounds are considered as the third largest natural drugs which are widely investigated in the world and they suffered restriction because of serious toxicity, such as hemorrhagic cystitis and bone marrow suppression. Methods: Using cell proliferation assay and S180 tumor mice model, a series of 20(S)-O-substituted benzoyl 7- ethylcamptothecin compounds were screened and evaluated the antitumor activities in vitro and in vivo. Camptothecin derivative 3j was selected for further study using flow cytometry in NSCLCs cells. Cell cycle related protein cyclin A2, CDK2, cyclin D and cyclin E were detected by Western Blot. Then, computer molecular docking was used to confirm the interaction between 3j and Topo I. Also, DNA relaxation assay and alkaline comet assay were used to investigate the mechanism of 3j on DNA damage. Results: Our results demonstrated that camptothecin derivative 3j showed a greater antitumor effect in eleven 20(S)-O-substituted benzoyl 7-ethylcamptothecin compounds in vitro and in vivo. The IC50 of 3j was 1.54± 0.41 µM lower than irinotecan with an IC50 of 13.86±0.80 µM in NCI-H460 cell, which was reduced by 8 fold. In NCI-H1975 cell, the IC50 of 3j was 1.87±0.23 µM lower than irinotecan (IC50±SD, 5.35±0.38 µM), dropped by 1.8 fold. Flow cytometry analysis revealed that 3j induced significant accumulation in a dose-dependent manner. After 24h of 3j (10 µM) treatment, the percentage of NCI-H460 cell in S-phase significantly increased (to 93.54 ± 4.4%) compared with control cells (31.67 ± 3.4%). Similarly, the percentage of NCI-H1975 cell in Sphase significantly increased (to 83.99 ± 2.4%) compared with control cells (34.45 ± 3.9%) after treatment with 10µM of 3j. Moreover, increased levels of cyclin A2, CDK2, and decreased levels of cyclin D, cyclin E further confirmed that cell cycle arrest was induced by 3j. Furthermore, molecular docking studies suggested that 3j interacted with Topo I-DNA and DNA-relaxation assay simultaneously confirmed that 3j suppressed the activity of Topo I. Research on the mechanism showed that 3j exhibited anti-tumour activity via activating the DNA damage response pathway and suppressing the repair pathway in NSCLC cells. Conclusion: Novel camptothecin derivative 3j has been demonstrated as a promising antitumor agent and remains to be assessed in further studies.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shuiyan Wu ◽  
You Jiang ◽  
Yi Hong ◽  
Xinran Chu ◽  
Zimu Zhang ◽  
...  

Abstract Background T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease with a high risk of induction failure and poor outcomes, with relapse due to drug resistance. Recent studies show that bromodomains and extra-terminal (BET) protein inhibitors are promising anti-cancer agents. ARV-825, comprising a BET inhibitor conjugated with cereblon ligand, was recently developed to attenuate the growth of multiple tumors in vitro and in vivo. However, the functional and molecular mechanisms of ARV-825 in T-ALL remain unclear. This study aimed to investigate the therapeutic efficacy and potential mechanism of ARV-825 in T-ALL. Methods Expression of the BRD4 were determined in pediatric T-ALL samples and differential gene expression after ARV-825 treatment was explored by RNA-seq and quantitative reverse transcription-polymerase chain reaction. T-ALL cell viability was measured by CCK8 assay after ARV-825 administration. Cell cycle was analyzed by propidium iodide (PI) staining and apoptosis was assessed by Annexin V/PI staining. BRD4, BRD3 and BRD2 proteins were detected by western blot in cells treated with ARV-825. The effect of ARV-825 on T-ALL cells was analyzed in vivo. The functional and molecular pathways involved in ARV-825 treatment of T-ALL were verified by western blot and chromatin immunoprecipitation (ChIP). Results BRD4 expression was higher in pediatric T-ALL samples compared with T-cells from healthy donors. High BRD4 expression indicated a poor outcome. ARV-825 suppressed cell proliferation in vitro by arresting the cell cycle and inducing apoptosis, with elevated poly-ADP ribose polymerase and cleaved caspase 3. BRD4, BRD3, and BRD2 were degraded in line with reduced cereblon expression in T-ALL cells. ARV-825 had a lower IC50 in T-ALL cells compared with JQ1, dBET1 and OTX015. ARV-825 perturbed the H3K27Ac-Myc pathway and reduced c-Myc protein levels in T-ALL cells according to RNA-seq and ChIP. In the T-ALL xenograft model, ARV-825 significantly reduced tumor growth and led to the dysregulation of Ki67 and cleaved caspase 3. Moreover, ARV-825 inhibited cell proliferation by depleting BET and c-Myc proteins in vitro and in vivo. Conclusions BRD4 indicates a poor prognosis in T-ALL. The BRD4 degrader ARV-825 can effectively suppress the proliferation and promote apoptosis of T-ALL cells via BET protein depletion and c-Myc inhibition, thus providing a new strategy for the treatment of T-ALL.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Guoying Zhang ◽  
Cheng Xue ◽  
Yiming Zeng

Abstract Background We have previously found that β-elemene could inhibit the viability of airway granulation fibroblasts and prevent airway hyperplastic stenosis. This study aimed to elucidate the underlying mechanism and protective efficacy of β-elemene in vitro and in vivo. Methods Microarray and bioinformatic analysis were used to identify altered pathways related to cell viability in a β-elemene-treated primary cell model and to construct a β-elemene-altered ceRNA network modulating the target pathway. Loss of function and gain of function approaches were performed to examine the role of the ceRNA axis in β-elemene's regulation of the target pathway and cell viability. Additionally, in a β-elemene-treated rabbit model of airway stenosis, endoscopic and histological examinations were used to evaluate its therapeutic efficacy and further verify its mechanism of action. Results The hyperactive ILK/Akt pathway and dysregulated LncRNA-MIR143HG, which acted as a miR-1275 ceRNA to modulate ILK expression, were suppressed in β-elemene-treated airway granulation fibroblasts; β-elemene suppressed the ILK/Akt pathway via the MIR143HG/miR-1275/ILK axis. Additionally, the cell cycle and apoptotic phenotypes of granulation fibroblasts were altered, consistent with ILK/Akt pathway activity. In vivo application of β-elemene attenuated airway granulation hyperplasia and alleviated scar stricture, and histological detections suggested that β-elemene's effects on the MIR143HG/miR-1275/ILK axis and ILK/Akt pathway were in line with in vitro findings. Conclusions MIR143HG and ILK may act as ceRNA to sponge miR-1275. The MIR143HG/miR-1275/ILK axis mediates β-elemene-induced cell cycle arrest and apoptosis of airway granulation fibroblasts by modulating the ILK/Akt pathway, thereby inhibiting airway granulation proliferation and ultimately alleviating airway stenosis.


Sign in / Sign up

Export Citation Format

Share Document