The use of Caenorhabditis elegans in parasitic nematode research

Parasitology ◽  
2004 ◽  
Vol 128 (S1) ◽  
pp. S49-S70 ◽  
Author(s):  
J. S. GILLEARD

There is increasing interest in the use of the free-living nematode Caenorhabditis elegans as a tool for parasitic nematode research and there are now a number of compelling examples of its successful application. C. elegans has the potential to become a standard tool for molecular helminthology researchers, just as yeast is routinely used by molecular biologists to study vertebrate biology. However, in order to exploit C. elegans in a meaningful manner, we need a detailed understanding of the extent to which different aspects of C. elegans biology have been conserved with particular groups of parasitic nematodes. This review first considers the current state of knowledge regarding the conservation of genome organisation across the nematode phylum and then discusses some recent evolutionary development studies in free-living nematodes. The aim is to provide some important concepts that are relevant to the extrapolation of information from C. elegans to parasitic nematodes and also to the interpretation of experiments that use C. elegans as a surrogate expression system. In general, examples have been specifically chosen because they highlight the importance of careful experimentation and interpretation of data. Consequently, the focus is on the differences that have been found between nematode species rather than the similarities. Finally, there is a detailed discussion of the current status of C. elegans as a heterologous expression system to study parasite gene function and regulation using successful examples from the literature.

Parasitology ◽  
2017 ◽  
Vol 145 (8) ◽  
pp. 979-987 ◽  
Author(s):  
Gustavo Salinas ◽  
Gastón Risi

AbstractThe free-living nematode Caenorhabditis elegans is the simplest animal model organism to work with. Substantial knowledge and tools have accumulated over 50 years of C. elegans research. The use of C. elegans relating to parasitic nematodes from a basic biology standpoint or an applied perspective has increased in recent years. The wealth of information gained on the model organism, the use of the powerful approaches and technologies that have advanced C. elegans research to parasitic nematodes and the enormous success of the omics fields have contributed to bridge the divide between C. elegans and parasite nematode researchers. We review key fields, such as genomics, drug discovery and genetics, where C. elegans and nematode parasite research have convened. We advocate the use of C. elegans as a model to study helminth metabolism, a neglected area ready to advance. How emerging technologies being used in C. elegans can pave the way for parasitic nematode research is discussed.


Parasitology ◽  
2010 ◽  
Vol 138 (2) ◽  
pp. 237-248 ◽  
Author(s):  
GILLIAN STEPEK ◽  
GILLIAN McCORMACK ◽  
ANDREW J. BIRNIE ◽  
ANTONY P. PAGE

SUMMARYNematodes represent one of the most abundant and species-rich groups of animals on the planet, with parasitic species causing chronic, debilitating infections in both livestock and humans worldwide. The prevalence and success of the nematodes is a direct consequence of the exceptionally protective properties of their cuticle. The synthesis of this cuticle is a complex multi-step process, which is repeated 4 times from hatchling to adult and has been investigated in detail in the free-living nematode, Caenorhabditis elegans. This process is known as moulting and involves numerous enzymes in the synthesis and degradation of the collagenous matrix. The nas-36 and nas-37 genes in C. elegans encode functionally conserved enzymes of the astacin metalloprotease family which, when mutated, result in a phenotype associated with the late-stage moulting defects, namely the inability to remove the preceding cuticle. Extensive genome searches in the gastrointestinal nematode of sheep, Haemonchus contortus, and in the filarial nematode of humans, Brugia malayi, identified NAS-36 but not NAS-37 homologues†. Significantly, the nas-36 gene from B. malayi could successfully complement the moult defects associated with C. elegans nas-36, nas-37 and nas-36/nas-37 double mutants, suggesting a conserved function for NAS-36 between these diverse nematode species. This conservation between species was further indicated when the recombinant enzymes demonstrated a similar range of inhibitable metalloprotease activities.


2018 ◽  
Author(s):  
Steffen R. Hahnel ◽  
Stefan Zdraljevic ◽  
Briana C. Rodriguez ◽  
Yuehui Zhao ◽  
Patrick T. McGrath ◽  
...  

AbstractBenzimidazoles (BZ) are essential components of the limited chemotherapeutic arsenal available to control the global burden of parasitic nematodes. The emerging threat of BZ resistance among nearly all nematode species necessitates the development of novel strategies to identify genetic and molecular mechanisms underlying this resistance. All detection of parasitic helminth resistance to BZ is focused on the genotyping of three variant sites in the orthologs of the β-tubulin gene found to confer resistance in the free-living nematode Caenorhabditis elegans. Because of the limitations of laboratory and field experiments in parasitic nematodes, it is difficult to look beyond these three sites, and additional BZ resistance is observed in the field. Here, we took an unbiased genome-wide mapping approach in the free-living nematode species C. elegans to identify the genetic underpinnings of natural resistance to the commonly used BZ, albendazole (ABZ). We found a wide range of natural variation in ABZ resistance in natural C. elegans populations. In agreement with known mechanisms of BZ resistance in parasites, we find that a majority of the variation in ABZ resistance among wild C. elegans strains is caused by variation in the β-tubulin gene ben-1. This result shows empirically that resistance to ABZ naturally exists and segregates within the C. elegans population, suggesting that selection in natural niches could enrich for resistant alleles. We identified 25 distinct ben-1 alleles that are segregating at low frequencies within the C. elegans population, including many novel molecular variants. Population genetic analyses indicate that ben-1 variation arose multiple times during the evolutionary history of C. elegans and provide evidence that these alleles likely occurred recently because of local selective pressures. Additionally, we find purifying selection at all five β-tubulin genes, despite predicted loss-of-function resistants variants in ben-1, indicating that BZ resistance in natural niches is a stronger selective pressure than loss of one β-tubulin gene. Furthermore, we use genome-editing to show that the most common parasitic nematode β-tubulin allele that confers BZ resistance, F200Y, confers resistance in C. elegans. Importantly, we identified a novel genomic region that is correlated with ABZ resistance in the C. elegans population but independent of ben-1 and the other β-tubulin loci, suggesting that there are multiple mechanisms underlying BZ resistance. Taken together, our results establish a population-level resource of nematode natural diversity as an important model for the study of mechanisms that give rise to BZ resistance.Author summaryNematode parasites have a tremendous impact on human health with almost two billion people infected worldwide. The control of nematode infections relies mainly on the efficacy of a limited repertoire of anthelmintic compounds, including the benzimidazoles (BZ). Already a significant problem in veterinary medicine, increasing evidence exists for the development of BZ resistance in nematodes that infect humans. Laboratory screens and field surveys identified β-tubulin genes as major determinants of BZ resistance in nematodes but detailed population-wide genetic analyses of resistance mechanisms are only just beginning. Therefore, we took advantage of the free-living model organism Caenorhabditis elegans to study the genetic basis of resistance to the commonly used BZ, albendazole (ABZ) in a natural nematode population. Performing genome-wide association mappings, we were able to identify extreme heterogeneity in the β-tubulin gene ben-1 as a major determinant of ABZ resistance. Moreover, our study provided new insights into the effects of missense and loss-of-function alleles at this locus, and how anthelmintic resistance could have developed within a natural nematode population.


2020 ◽  
Author(s):  
Nicolas Lamassiaude ◽  
Elise Courtot ◽  
Angélique Corset ◽  
Claude L. Charvet ◽  
Cédric Neveu

AbstractGlutamate-gated chloride channels receptors (GluCls) are involved in the inhibition of neurotransmission in invertebrates and represent major molecular targets for therapeutic drugs. Among these drugs, macrocyclic lactones (MLs) are widely used as anthelmintic to treat parasitic nematodes impacting both human and animal health. Despite massive use of MLs since the 80’s, the exact molecular targets of these drugs are still unknown in many important parasite species. Among the GluCl subunit encoding genes, avr-14, glc-2, glc-3 and glc-4 are highly conserved throughout the nematode phylum. Using the Xenopus oocyte as an expression system, we pharmacologically characterized these GluCl subunits from the model nematode Caenorhabditis elegans, the human filarial nematode Brugia malayi and the horse parasitic nematode Parascaris univalens. In contrast with C. elegans, expression of parasitic nematode subunits as homomeric receptors was not reliable and needed glutamate application at the mM range to induce low currents at the nA range. However, the co-expression of GLC-2 and AVR-14B lead to the robust expression of ML-sensitive receptors for the three nematode species. In addition, we demonstrated that for C. elegans and P. univalens, GLC-2 co-assembled with GLC-3 to form a new GluCl subtype with distinct pharmacological properties. Whereas 1μM ivermectin, moxidectin and eprinomectin acted as agonist of the GLC-2/GLC-3 receptor from C. elegans, they did not directly activate GLC-2/GLC-3 of P. univalens. In contrast, these MLs potentialized glutamate elicited currents thus representing a unique pharmacological property. Our results highlight the importance of GLC-2 as a key subunit in the composition of heteromeric channels in nematodes and demonstrate that MLs act on novel GluCl subtypes that show unusual pharmacological properties, providing new insights about MLs mode of action.Author summaryThe filarial and ascarid parasitic nematodes include some of the most pathogenic or invalidating species in humans, livestock and companion animals. Whereas the control of these worms is critically dependent on macrocyclic lactones (MLs) such as ivermectin, the mode of action of this anthelmintic class remains largely unknown in these parasites. In the model nematode Caenorhabditis elegans, MLs target GluCl pentameric glutamate-sensitive chloride channels (GluCl). Because MLs are potent anthelmintics on C. elegans, ascarid and filarial nematodes, in the present study we investigated GluCl subunits highly conserved between these distantly related worms. Using the Xenopus oocyte as a heterologous expression system, we identified and performed the pharmacological characterization of novel GluCl receptors from C. elegans, the human filarial parasite Brugia malayi and the horse parasite Parascaris univalens. Our results highlight heteromeric GluCls from parasites as molecular targets for a wide range of MLs. We report an original mode of action of MLs on a new GluCl subtype made of the GLC-2/GLC-3 subunit combination. This study brings new insights about the diversity of GluCl subtypes in nematodes and opens the way for rational drug screening for the identification of next generation anthelmintic compounds.


Parasitology ◽  
2018 ◽  
Vol 146 (3) ◽  
pp. 314-320 ◽  
Author(s):  
Veeren M Chauhan ◽  
David I Pritchard

AbstractCaenorhabditis elegans is a free-living nematode that resides in soil and typically feeds on bacteria. We postulate that haematophagic C. elegans could provide a model to evaluate vaccine responses to intestinal proteins from hematophagous nematode parasites, such as Necator americanus. Human erythrocytes, fluorescently labelled with tetramethylrhodamine succinimidyl ester, demonstrated a stable bright emission and facilitated visualization of feeding events with fluorescent microscopy. C. elegans were observed feeding on erythrocytes and were shown to rupture red blood cells upon capture to release and ingest their contents. In addition, C. elegans survived equally on a diet of erythrocytes. There was no statistically significant difference in survival when compared with a diet of Escherichia coli OP50. The enzymes responsible for the digestion and detoxification of haem and haemoglobin, which are key components of the hookworm vaccine, were found in the C. elegans intestine. These findings support our postulate that free-living nematodes could provide a model for the assessment of neutralizing antibodies to current and future hematophagous parasite vaccine candidates.


2016 ◽  
Vol 283 (1835) ◽  
pp. 20160942 ◽  
Author(s):  
Jinshui Zheng ◽  
Donghai Peng ◽  
Ling Chen ◽  
Hualin Liu ◽  
Feng Chen ◽  
...  

Plant-parasitic nematodes were found in 4 of the 12 clades of phylum Nematoda. These nematodes in different clades may have originated independently from their free-living fungivorous ancestors. However, the exact evolutionary process of these parasites is unclear. Here, we sequenced the genome sequence of a migratory plant nematode, Ditylenchus destructor . We performed comparative genomics among the free-living nematode, Caenorhabditis elegans and all the plant nematodes with genome sequences available. We found that, compared with C. elegans , the core developmental control processes underwent heavy reduction, though most signal transduction pathways were conserved. We also found D. destructor contained more homologies of the key genes in the above processes than the other plant nematodes. We suggest that Ditylenchus spp. may be an intermediate evolutionary history stage from free-living nematodes that feed on fungi to obligate plant-parasitic nematodes. Based on the facts that D. destructor can feed on fungi and has a relatively short life cycle, and that it has similar features to both C. elegans and sedentary plant-parasitic nematodes from clade 12, we propose it as a new model to study the biology, biocontrol of plant nematodes and the interaction between nematodes and plants.


Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 312
Author(s):  
Tina V. A. Hansen ◽  
Heinz Sager ◽  
Céline E. Toutain ◽  
Elise Courtot ◽  
Cédric Neveu ◽  
...  

Natural plant compounds, such as betaine, are described to have nematocidal properties. Betaine also acts as a neurotransmitter in the free-living model nematode Caenorhabditis elegans, where it is required for normal motility. Worm motility is mediated by nicotinic acetylcholine receptors (nAChRs), including subunits from the nematode-specific DEG-3 group. Not all types of nAChRs in this group are associated with motility, and one of these is the DEG-3/DES-2 channel from C. elegans, which is involved in nociception and possibly chemotaxis. Interestingly, the activity of DEG-3/DES-2 channel from the parasitic nematode of ruminants, Haemonchus contortus, is modulated by monepantel and its sulfone metabolite, which belong to the amino-acetonitrile derivative anthelmintic drug class. Here, our aim was to advance the pharmacological knowledge of the DEG-3/DES-2 channel from C. elegans by functionally expressing the DEG-3/DES-2 channel in Xenopus laevis oocytes and using two-electrode voltage-clamp electrophysiology. We found that the DEG-3/DES-2 channel was more sensitive to betaine than ACh and choline, but insensitive to monepantel and monepantel sulfone when used as direct agonists and as allosteric modulators in co-application with betaine. These findings provide important insight into the pharmacology of DEG-3/DES-2 from C. elegans and highlight the pharmacological differences between non-parasitic and parasitic nematode species.


2014 ◽  
Vol 60 (1) ◽  
Author(s):  
Romina E. D’Almeida ◽  
María R. Alberto ◽  
Phillip Morgan ◽  
Margaret Sedensky ◽  
María I. Isla

AbstractZuccagnia punctata Cav. (Fabaceae), commonly called jarilla macho or pus-pus, is being used in traditional medicine as an antiseptic, anti-inflammatory and to relieve muscle and bone pain. The aim of this work was to study the anthelmintic effects of three structurally related flavonoids present in aerial parts of Z. punctata Cav. The biological activity of the flavonoids 7-hydroxyflavanone (HF), 3,7-dihydroxyflavone (DHF) and 2´,4´-dihydroxychalcone (DHC) was examined in the free-living nematode Caenorhabditis elegans. Our results showed that among the assayed flavonoids, only DHC showed an anthelmintic effect and alteration of egg hatching and larval development processes in C. elegans. DHC was able to kill 50% of adult nematodes at a concentration of 17 μg/mL. The effect on larval development was observed after 48 h in the presence of 25 and 50 μg/mL DHC, where 33.4 and 73.4% of nematodes remained in the L3 stage or younger. New therapeutic drugs with good efficacy against drug-resistant nematodes are urgently needed. Therefore, DHC, a natural compound present in Z. punctata, is proposed as a potential anthelmintic drug.


Nematology ◽  
2005 ◽  
Vol 7 (5) ◽  
pp. 761-766 ◽  
Author(s):  
Nancy Lu ◽  
Rekha Balachandar

AbstractCaenorhabditis elegans is a free-living nematode cultured in an axenic medium, the Caenorhabditis elegans Maintenance Medium (CeMM), which contains B-vitamins, salts, amino acids, nucleic acid substituents, growth factors and glucose as an energy source. After initial experiments established that either pantothenate or pantethine would satisfy the vitamin B5 requirement in C. elegans, reproduction in the nematodes was measured in eight equimolar concentrations of calcium pantothenate, pantethine or coenzyme A. The optimal levels for pantothenate were found to be 7.5, 30 and 120 μg ml−1. The optimal levels for pantethine and coenzyme A were found to be 35 μg ml−1 and 100 μg ml−1, respectively. Among the three compounds, coenzyme A (at 100 μg/ml) supported a significantly greater population growth and, perhaps, is a more metabolically active form. Mild toxicity was demonstrated for pantothenate at 480μg ml−1, pantethine at 560 and 140 μg ml−1, and coenzyme A was found to exhibit toxicity at 410 and 1700 μg ml−1. Based on our results, we recommend that in the future the CeMM could be supplemented with pantothenate (7.5 μg ml−1) alone.


Sign in / Sign up

Export Citation Format

Share Document