scholarly journals Evolutionary history of Trypanosoma cruzi according to antigen genes

Parasitology ◽  
2008 ◽  
Vol 135 (10) ◽  
pp. 1157-1164 ◽  
Author(s):  
M. ROZAS ◽  
S. DE DONCKER ◽  
X. CORONADO ◽  
C. BARNABÉ ◽  
M. TIBYARENC ◽  
...  

SUMMARYTrypanosoma cruzi, the agent of Chagas disease is associated with a very high clinical and epidemiological pleomorphism. This might be better understood through studies on the evolutionary history of the parasite. We explored here the value of antigen genes for the understanding of the evolution within T. cruzi. We selected 11 genes and 12 loci associated with different functions and considered to be involved in host-parasite interaction (cell adhesion, infection, molecular mimicry). The polymorphism of the respective genes in a sample representative of the diversity of T. cruzi was screened by PCR-RFLP and evolutionary relationships were inferred by phenetic analysis. Our results support the classification of T. cruzi in 2 major lineages and 6 discrete typing units (DTUs). The topology of the PCR-RFLP tree was the one that better fitted with the epidemiological features of the different DTUs: (i) lineage I, being encountered in sylvatic as well as domestic transmission cycles, (ii) IIa/c being associated with a sylvatic transmission cycle and (iii) IIb/d/e being associated with a domestic transmission cycle. Our study also supported the hypothesis that the evolutionary history of T. cruzi has been shaped by a series of hybridization events in the framework of a predominant clonal evolution pattern.

2014 ◽  
Vol 59 (2) ◽  
Author(s):  
Jacek Dabert

AbstractNeumannella skorackii, a new species of the feather mite family Dermoglyphidae (Acari, Astigmata) is described from the Red-winged Tinamou Rhynchotus rufescens (Temminck, 1815) (Aves, Tinamiformes) from Paraguay and a key to all known species of the genus is provided. The phylogenetic relationships (MP analysis of 25 morphological characters) between Neumannella species along with the evolutionary history of host-parasite associations revealed by Jungle reconciliation method are reconstructed. Relatively low cospeciation contribution to the recent host-parasite associations is discovered.


2016 ◽  
Vol 53 (4) ◽  
pp. 911-918 ◽  
Author(s):  
Rodion Gorchakov ◽  
Lillian P. Trosclair ◽  
Edward J. Wozniak ◽  
Patricia T. Feria ◽  
Melissa N. Garcia ◽  
...  

Abstract Protozoan pathogen Trypanosoma cruzi (Chagas, 1909) is the etiologic agent of Chagas disease, which affects millions of people in Latin America. Recently, the disease has been gaining attention in Texas and the southern United States. Transmission cycle of the parasite involves alternating infection between insect vectors and vertebrate hosts (including humans, wildlife, and domestic animals). To evaluate vector T. cruzi parasite burden and feeding patterns, we tested triatomine vectors from 23 central, southern, and northeastern counties of Texas. Out of the 68 submitted specimens, the majority were genetically identified as Triatoma gerstaeckeri (Stal, 1859), with a few samples of Triatoma sanguisuga (LeConte, 1855), Triatoma lecticularia (Stal, 1859), Triatoma rubida (Uhler, 1894), and Triatoma protracta woodi (Usinger, 1939). We found almost two-thirds of the submitted insects were polymerase chain reaction-positive for T. cruzi. Bloodmeal sources were determined for most of the insects, and 16 different species of mammals were identified as hosts. The most prevalent type of bloodmeal was human, with over half of these insects found to be positive for T. cruzi. High infection rate of the triatomine vectors combined with high incidence of feeding on humans highlight the importance of Chagas disease surveillance in Texas. With our previous findings of autochthonous transmission of Chagas disease, urgent measures are needed to increase public awareness, vector control in and around homes, and Chagas screening of residents who present with a history of a triatomine exposure.


2020 ◽  
Vol 74 (1) ◽  
pp. 477-495
Author(s):  
Jasmine Ono ◽  
Duncan Greig ◽  
Primrose J. Boynton

The genus Saccharomyces is an evolutionary paradox. On the one hand, it is composed of at least eight clearly phylogenetically delineated species; these species are reproductively isolated from each other, and hybrids usually cannot complete their sexual life cycles. On the other hand, Saccharomyces species have a long evolutionary history of hybridization, which has phenotypic consequences for adaptation and domestication. A variety of cellular, ecological, and evolutionary mechanisms are responsible for this partial reproductive isolation among Saccharomyces species. These mechanisms have caused the evolution of diverse Saccharomyces species and hybrids, which occupy a variety of wild and domesticated habitats. In this article, we introduce readers to the mechanisms isolating Saccharomyces species, the circumstances in which reproductive isolation mechanisms are effective and ineffective, and the evolutionary consequences of partial reproductive isolation. We discuss both the evolutionary history of the genus Saccharomyces and the human history of taxonomists and biologists struggling with species concepts in this fascinating genus.


2017 ◽  
Author(s):  
Paola Bonizzoni ◽  
Simone Ciccolella ◽  
Gianluca Della Vedova ◽  
Mauricio Soto

AbstractMost of the evolutionary history reconstruction approaches are based on the infinite site assumption, which is underlying the Perfect Phylogeny model and whose main consequence is that acquired mutation can never lost. This results in the clonal model used to explain cancer evolution. Some recent results gives a strong evidence that recurrent and back mutations are present in the evolutionary history of tumors [5,21], thus showing that more general models then the Perfect Phylogeny are required. We propose a new approach that incorporates the possibility of losing a previously acquired mutation, extending the Persistent Phylogeny model [1].We exploit our model to provide an ILP formulation of the problem of reconstructing trees on mixed populations, where the input data consists of the fraction of cells in a set of samples that have a certain mutation. This is a fundamental problem in cancer genomics, where the goal is to study the evolutionary history of a tumor. An experimental analysis shows the usefulness of allowing mutation losses, by studying some real and simulated datasets where our ILP approach provides a better interpretation than the one obtained under perfect phylogeny assumption. Finally, we show how to incorporate multiple back mutations and recurrent mutations in our model.


2014 ◽  
Vol 36 (1) ◽  
pp. 9-14 ◽  
Author(s):  
Elizabeth R. Waters

In this review, I briefly describe the distinct evolutionary history of each of the major heat-shock protein families (HSPs). If you view the cell as a complex and optimized machine and study only the heat-shock response and chaperone network in a single species, such as humans, yeast or Arabidopsis, you would find a complex molecular machinery with many ‘parts’ or proteins that work in a co-ordinate fashion to disaggregate and fold proteins. The close association and importance of these proteins parts would lead you to believe that this cellular machine could not work if some parts were missing, had been differentially manufactured or were present in differing amounts. Yet, this is just what we find when we look at the evolution of the HSPs. What makes the evolution of the HSPs and the chaperone network so fascinating is that, on the one hand, the HSPs are highly conserved, work in a collaborative fashion and are necessary for life. On the other hand, each domain of life (Archaea, Bacteria and Eukarya) has a different subset of HSPs, and each HSP family has a unique evolutionary history.


2017 ◽  
Vol 92 (3) ◽  
pp. 379-386
Author(s):  
F. Jorge ◽  
R.S.A. White ◽  
R.A. Paterson

AbstractThe extent of New Zealand's freshwater fish-parasite diversity has yet to be fully revealed, with host–parasite relationships still to be described from nearly half the known fish community. While advances in the number of fish species examined and parasite taxa described are being made, some parasite groups, such as nematodes, remain poorly understood. In the present study we combined morphological and molecular analyses to characterize a capillariid nematode found infecting the swim bladder of the brown mudfish Neochanna apoda, an endemic New Zealand fish from peat-swamp-forests. Morphologically, the studied nematodes are distinct from other Capillariinae taxa by the features of the male posterior end, namely the shape of the bursa lobes, and shape of spicule distal end. Male specimens were classified into three different types according to differences in the shape of the bursa lobes at the posterior end, but only one was successfully characterized molecularly. Molecular analysis indicated that the studied capillariid is distinct from other genera. However, inferences about the phylogenetic position of the capillariid reported here will remain uncertain, due to the limited number of Capillariinae taxa characterized molecularly. The discovery of this new capillariid, which atypically infects the swim bladder of its host, which itself inhabits a very unique ecosystem, underlines the very interesting evolutionary history of this parasite, which for now will remain unresolved.


2012 ◽  
Vol 21 (03) ◽  
pp. 1250027
Author(s):  
MANASSE R. MBONYE ◽  
NICHOLAS BATTISTA ◽  
BENJAMIN FARR

There is growing notion that black holes may not contain curvature singularities (and that indeed nature in general may abhor such spacetime defects). This notion could have implications on our understanding of the evolution of primordial Black holes (PBHs) and possibly on their contribution to cosmic energy. This paper discusses the evolution of a nonsingular black hole (NSBH) based on a recent model [M. R. Mbonye and D. Kazanas, Phys. Rev. D. 72 (2005) 024016]. The model is used to discuss the time evolution of a primordial black hole (PBH), through the early radiation era of the universe to present, under the assumption that PBHs are nonsingular. In particular, we track the evolution of two benchmark PBHs, namely the one radiating up to the end of the cosmic radiation domination era, and the one stopping to radiate currently, and in each case determine some useful features including the initial mass mf and the corresponding time of formation tf. It is found that along the evolutionary history of the universe the distribution of PBH remnant masses (PBH-RM) PBH-RMs follows a power law. We believe such a result can be a useful step in a study to establish current abundance of PBH-MRs.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Adrien Quiles ◽  
Rémi A. Wattier ◽  
Karolina Bacela-Spychalska ◽  
Michal Grabowski ◽  
Thierry Rigaud

Abstract Background Although the processes of co-evolution between parasites and their hosts are well known, evidence of co-speciation remains scarce. Microsporidian intracellular parasites, due to intimate relationships with their hosts and mixed mode of transmission (horizontal but also vertical, from mother to offspring), may represent an interesting biological model for investigating co-speciation. Amphipod crustaceans, especially gammarids, are regular hosts of microsporidian parasites, in particular the Dictyocoela spp., which have so far been found limited to these amphipods and are known to use a vertical mode of transmission. The amphipod genus Gammarus has a diversification history spanning the last 50–60 Mya and an extensive cryptic diversity in most of the nominal species. Here, we investigated the degree of co-diversification between Dictyocoela and Gammarus balcanicus, an amphipod with high degrees of ancient cryptic diversification and lineage endemism, by examining the genetic diversity of these parasites over the entire geographic range of the host. We hypothesised that the strong host diversification and vertical transmission of Dictyocoela would promote co-diversification. Results Using the parasite SSU rDNA as a molecular marker, analyzing 2225 host specimens from 88 sites covering whole host range, we found 31 haplogroups of Dictyocoela, 30 of which were novel, belonging to four Dictyocoela species already known to infect other Gammarus spp. The relationships between Dictyocoela and gammarids is therefore ancient, with the speciation in parasites preceding those of the hosts. Each novel haplogroup was nevertheless specific to G. balcanicus, leaving the possibility for subsequent co-diversification process during host diversification. A Procrustean Approach to Co-phylogeny (PACo) analysis revealed that diversification of Dictyocoela was not random with respect to that of the host. We found high degrees of congruence between the diversification of G. balcanicus and that of Dictyocoela roeselum and D. muelleri. However, we also found some incongruences between host and Dictyocoela phylogenies, e.g. in D. duebenum, probably due to host shifts between different G. balcanicus cryptic lineages. Conclusion The evolutionary history of Dictyocoela and Gammarus balcanicus represents an example of an overall host-parasite co-diversification, including cases of host shifts.


2018 ◽  
Vol 14 (5) ◽  
pp. 20180141 ◽  
Author(s):  
Kevin P. Johnson ◽  
Nam-phuong Nguyen ◽  
Andrew D. Sweet ◽  
Bret M. Boyd ◽  
Tandy Warnow ◽  
...  

The diversification of parasite groups often occurs at the same time as the diversification of their hosts. However, most studies demonstrating this concordance only examine single host–parasite groups. Multiple diverse lineages of ectoparasitic lice occur across both birds and mammals. Here, we describe the evolutionary history of lice based on analyses of 1107 single-copy orthologous genes from sequenced genomes of 46 species of lice. We identify three major diverse groups of lice: one exclusively on mammals, one almost exclusively on birds and one on both birds and mammals. Each of these groups radiated just after the Cretaceous–Paleogene (K-Pg) boundary, the time of the mass extinction event of the dinosaurs and rapid diversification of most of the modern lineages of birds and mammals.


2018 ◽  
Vol 41 ◽  
Author(s):  
Kevin Arceneaux

AbstractIntuitions guide decision-making, and looking to the evolutionary history of humans illuminates why some behavioral responses are more intuitive than others. Yet a place remains for cognitive processes to second-guess intuitive responses – that is, to be reflective – and individual differences abound in automatic, intuitive processing as well.


Sign in / Sign up

Export Citation Format

Share Document