Unveiling patterns of genetic variation in parasite–host associations: an example with pinworms and Neotropical primates

Parasitology ◽  
2018 ◽  
Vol 146 (3) ◽  
pp. 356-362 ◽  
Author(s):  
Brenda Solórzano García ◽  
Amanda D. Melin ◽  
Filippo Aureli ◽  
Gerardo Pérez Ponce de León

AbstractPatterns of genetic variation among populations can reveal the evolutionary history of species. Pinworm parasites are highly host specific and form strong co-evolutionary associations with their primate hosts. Here, we describe the genetic variation observed in four Trypanoxyuris species infecting different howler and spider monkey subspecies in Central America to determine if historical dispersal processes and speciation in the host could explain the genetic patterns observed in the parasites. Mitochondrial (cox1) and ribosomal (28S) DNA were analysed to assess genetic divergence and phylogenetic history of these parasites. Sequences of the 28S gene were identical within pinworms species regardless of host subspecies. However, phylogenetic analyses, haplotype relationships and genetic divergence with cox1 showed differentiation between pinworm populations according to host subspecies in three of the four Trypanoxyuris species analysed. Haplotype separation between host subspecies was not observed in Trypanoxyuris minutus, nor in Trypanoxyuris atelis from Ateles geoffoyi vellerosus and Ateles geoffoyi yucatanensis. Levels of genetic diversity and divergence in these parasites relate with such estimates reported for their hosts. This study shows how genetic patterns uncovered in parasitic organisms can reflect the host phylogenetic and biogeographic histories.

AoB Plants ◽  
2019 ◽  
Vol 11 (4) ◽  
Author(s):  
Alice Backes ◽  
Geraldo Mäder ◽  
Caroline Turchetto ◽  
Ana Lúcia Segatto ◽  
Jeferson N Fregonezi ◽  
...  

Abstract Different genetic patterns have been demonstrated for narrowly distributed taxa, many of them linking rarity to evolutionary history. Quite a few species in young genera are endemics and have several populations that present low variability, sometimes attributed to geographical isolation or dispersion processes. Assessing the genetic diversity and structure of such species may be important for protecting them and understanding their diversification history. In this study, we used microsatellite markers and plastid sequences to characterize the levels of genetic variation and population structure of two endemic and restricted species that grow in isolated areas on the margin of the distribution of their respective genera. Plastid and nuclear diversities were very low and weakly structured in their populations. Evolutionary scenarios for both species are compatible with open-field expansions during the Pleistocene interglacial periods and genetic variability supports founder effects to explain diversification. At present, both species are suffering from habitat loss and changes in the environment can lead these species towards extinction.


2013 ◽  
Vol 79 (3) ◽  
pp. 311-324 ◽  
Author(s):  
Tania Anaid Gutiérrez-García ◽  
Ella Vázquez-Domínguez

AbstractResults from genetic and geologic studies can be combined to elucidate some general patterns of the biogeographic and evolutionary history of Central America (CA) and of its biota. Based on an ample review of geologic, biogeographic and genetic studies, our aim was to examine how common genetic patterns can be linked with geologic processes. Considering information about geologic and tectonic evolution of CA, we subdivided the region into four tectonic blocks: Maya, Chortis, Chorotega and Chocó. Species exchange between North/South America and CA encompasses three events: a first migration during the Late Cretaceous–Early Paleocene, a second through a terrestrial corridor preceding the formation of the Isthmus of Panama (IP), and the third involving a major dispersion through the IP. Such events caused similar genetic differentiation patterns and left a signature on the diversification of extant taxa, which we propose as three evolutionary groups: 1) Mayan, characterized by marked genetic structure and divergence, multiple refugia and formation of cryptic species; 2) Mid-CA, defined by high differentiation at the population level and between highland and lowlands, associated with intense volcanic activity; 3) Panamian, distinguished by migration from north to south and vice versa via de IP, with markedly high species divergence and speciation.


Life ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 416
Author(s):  
Elisabetta Coradduzza ◽  
Daria Sanna ◽  
Angela M. Rocchigiani ◽  
Davide Pintus ◽  
Fabio Scarpa ◽  
...  

Orf virus (ORFV) represents the causative agent of contagious ecthyma, clinically characterized by mild papular and pustular to severe proliferative lesions, mainly occurring in sheep and goats. In order to provide hints on the evolutionary history of this virus, we carried out a study aimed to assess the genetic variation of ORFV in Sardinia that hosts a large affected small ruminant population. We also found a high worldwide mutational viral evolutionary rate, which resulted, in turn, higher than the rate we detected for the strains isolated in Sardinia. In addition, a well-supported genetic divergence was found between the viral strains isolated from sheep and those from goats, but no relevant connection was evidenced between the severity of lesions produced by ORFV and specific polymorphic patterns in the two species of hosts. Such a finding suggests that ORFV infection-related lesions are not necessarily linked to the expression of one of the three genes here analyzed and could rather be the effect of the expression of other genes or rather represents a multifactorial character.


2007 ◽  
Vol 28 (1) ◽  
pp. 1-6 ◽  
Author(s):  
José Brito ◽  
Raquel Vaconcelos ◽  
D. James Harris

AbstractAfrican spiny-tailed lizards (Uromastyx) are large, herbivorous lizards extensively traded locally for food and internationally as pets. Several species have recently been described, although some remain controversial. To determine relationships within North African forms, twenty individuals were analysed for over 1000 bases of mitochondrial DNA sequences. Phylogenetic analyses indicate four deeply divergent lineages that correspond to sampling areas, but not to current species designations. These results indicate that present taxonomy does not reflect the evolutionary history of these species.


2022 ◽  
Author(s):  
Tista Ghosh ◽  
Shrewshree Kumar ◽  
Kirtika Sharma ◽  
Parikshit Kakati ◽  
Amit Sharma ◽  
...  

The extant members of the Eurasian rhino species have experienced severe population and range declines through a combination of natural and anthropogenic factors since the Pleistocene. The one-horned rhino is the only Asian species recovered from such strong population decline but most of their fragmented populations in India and Nepal are reaching carrying capacity. Implementation of any future reintroduction-based conservation efforts would greatly benefit from currently unavailable detailed genetic assessments and the evolutionary history of these populations. We sequenced wild one-horned rhino mitogenomes from all the extant populations (n=16 individuals) for the first time, identified the polymorphic sites and assessed genetic variation (2531bp mtDNA, n=111 individuals) across India. Results showed 30 unique rhino haplotypes distributed as three distinct genetic clades (Fst value 0.68-1) corresponding to the states of Assam (n=28 haplotypes), West Bengal and Uttar Pradesh (both monomorphic). Phylogenetic analyses suggest earlier coalescence of Assam (~0.5 Mya) followed by parallel divergence of West Bengal and Uttar Pradesh/Nepal (~0.06-0.05Mya), supported by the paleobiogeographic history of the Indian subcontinent. Combined together, we propose recognising three Evolutionary Significant Units (ESUs) of the Indian rhino. As recent assessments suggest further genetic isolations of the Indian rhinos at local scales, future management efforts should focus on identifying genetically variable founder animals and consider periodic supplementation events while planning future rhino reintroduction programs in India. Such well-informed, multidisciplinary approach is the only way to ensure evolutionary, ecological and demographic stability of the species across its range.


Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 737
Author(s):  
Issiaka Bagayoko ◽  
Marcos Giovanni Celli ◽  
Gustavo Romay ◽  
Nils Poulicard ◽  
Agnès Pinel-Galzi ◽  
...  

The rice stripe necrosis virus (RSNV) has been reported to infect rice in several countries in Africa and South America, but limited genomic data are currently publicly available. Here, eleven RSNV genomes were entirely sequenced, including the first corpus of RSNV genomes of African isolates. The genetic variability was differently distributed along the two genomic segments. The segment RNA1, within which clusters of polymorphisms were identified, showed a higher nucleotidic variability than did the beet necrotic yellow vein virus (BNYVV) RNA1 segment. The diversity patterns of both viruses were similar in the RNA2 segment, except for an in-frame insertion of 243 nucleotides located in the RSNV tgbp1 gene. Recombination events were detected into RNA1 and RNA2 segments, in particular in the two most divergent RSNV isolates from Colombia and Sierra Leone. In contrast to BNYVV, the RSNV molecular diversity had a geographical structure with two main RSNV lineages distributed in America and in Africa. Our data on the genetic diversity of RSNV revealed unexpected differences with BNYVV suggesting a complex evolutionary history of the genus Benyvirus.


Author(s):  
Sergio A Muñoz-Gómez ◽  
Keira Durnin ◽  
Laura Eme ◽  
Christopher Paight ◽  
Christopher E Lane ◽  
...  

Abstract A most interesting exception within the parasitic Apicomplexa is Nephromyces, an extracellular, probably mutualistic, endosymbiont found living inside molgulid ascidian tunicates (i.e., sea squirts). Even though Nephromyces is now known to be an apicomplexan, many other questions about its nature remain unanswered. To gain further insights into the biology and evolutionary history of this unusual apicomplexan, we aimed to (1) find the precise phylogenetic position of Nephromyces within the Apicomplexa, (2) search for the apicoplast genome of Nephromyces, and (3) infer the major metabolic pathways in the apicoplast of Nephromyces. To do this, we sequenced a metagenome and a metatranscriptome from the molgulid renal sac, the specialized habitat where Nephromyces thrives. Our phylogenetic analyses of conserved nucleus-encoded genes robustly suggest that Nephromyces is a novel lineage sister to the Hematozoa, which comprises both the Haemosporidia (e.g., Plasmodium) and the Piroplasmida (e.g., Babesia and Theileria). Furthermore, a survey of the renal sac metagenome revealed 13 small contigs that closely resemble the genomes of the non-photosynthetic reduced plastids, or apicoplasts, of other apicomplexans. We show that these apicoplast genomes correspond to a diverse set of most closely related but genetically divergent Nephromyces lineages that co-inhabit a single tunicate host. In addition, the apicoplast of Nephromyces appears to have retained all biosynthetic pathways inferred to have been ancestral to parasitic apicomplexans. Our results shed light on the evolutionary history of the only probably mutualistic apicomplexan known, Nephromyces, and provide context for a better understanding of its life style and intricate symbiosis.


2013 ◽  
Vol 85 (4) ◽  
pp. 1439-1447 ◽  
Author(s):  
Jonas Aguiar ◽  
Horacio Schneider ◽  
Fatima Gomes ◽  
Jeferson Carneiro ◽  
Simoni Santos ◽  
...  

The tambaqui, Colossoma macropomum, is the most popular fish species used for aquaculture in Brazil but there is no study comparing genetic variation among native and farmed populations of this species. In the present study, we analyzed DNA sequences of the mitochondrial DNA to evaluate the genetic diversity among two wild populations, a fry-producing breeding stock, and a sample of fish farm stocks, all from the region of Santarém, in the west of the Brazilian state of Pará. Similar levels of genetic diversity were found in all the samples and surprisingly the breeding stock showed expressive representation of the genetic diversity registered on wild populations. These results contrast considerably with those of the previous study of farmed stocks in the states of Amapá, Pará, Piauí, and Rondônia, which recorded only two haplotypes, indicating a long history of endogamy in the breeding stocks used to produce fry. The results of the two studies show two distinct scenarios of tambaqui farming in the Amazon basin, which must be better evaluated in order to guarantee the successful expansion of this activity in the region, and the rest of Brazil, given that the tambaqui and its hybrids are now farmed throughout the country.


Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 113
Author(s):  
Sergey Alkhovsky ◽  
Sergey Lenshin ◽  
Alexey Romashin ◽  
Tatyana Vishnevskaya ◽  
Oleg Vyshemirsky ◽  
...  

We found and genetically described two novel SARS-like coronaviruses in feces and oral swabs of the greater (R. ferrumequinum) and the lesser (R. hipposideros) horseshoe bats in southern regions of Russia. The viruses, named Khosta-1 and Khosta-2, together with related viruses from Bulgaria and Kenya, form a separate phylogenetic lineage. We found evidence of recombination events in the evolutionary history of Khosta-1, which involved the acquisition of the structural proteins S, E, and M, as well as the nonstructural genes ORF3, ORF6, ORF7a, and ORF7b, from a virus that is related to the Kenyan isolate BtKY72. The examination of bats by RT-PCR revealed that 62.5% of the greater horseshoe bats in one of the caves were positive for Khosta-1 virus, while its overall prevalence was 14%. The prevalence of Khosta-2 was 1.75%. Our results show that SARS-like coronaviruses circulate in horseshoe bats in the region, and we provide new data on their genetic diversity.


Sign in / Sign up

Export Citation Format

Share Document