Evidence for selection for the tyrosine-86 allele of the pfmdr 1 gene of Plasmodium falciparum by chloroquine and amodiaquine

Parasitology ◽  
1997 ◽  
Vol 114 (3) ◽  
pp. 205-211 ◽  
Author(s):  
M. T. DURAISINGH ◽  
C. J. DRAKELEY ◽  
O. MULLER ◽  
R. BAILEY ◽  
G. SNOUNOU ◽  
...  

The 4-aminoquinolines chloroquine (CQ) and amodiaquine (AM) were used to treat Gambian children with uncomplicated falciparum malaria in a randomized drug trial. Blood samples were taken immediately before treatment (day 0), and at day 7 and day 28 after treatment. Samples from those parasitologically positive at day 7 following treatment (‘early positives’) and those positive at day 28 but negative at day 7 (‘late positives’) have been studied by PCR followed by restriction enzyme digestion to determine the allelic status of the pfmdr 1 locus at the codon-86 position (asparagine or tyrosine), previously associated with resistance to CQ. A significantly higher prevalence of the tyr-86 allele was observed in samples taken immediately before treatment (day 0) in the early positives group when compared with the late positives group. This suggests the tyr-86 allele contributes to drug resistance in the early positives group. This association remained significant for both CQ and AM groups, implying a common genetic basis of resistance. Predominance of the allele at day 7 is consistent with a strong selection in the first week following treatment. In the late positives group, a significantly higher prevalence of the tyr-86 allele was observed in the samples at day 28 when compared with those at day 0, suggestive of selection during the period day 7 to day 28. Differences were observed in the extent of this selection in the CQ and AM groups. The samples were genotyped at 3 unlinked polymorphic loci. These analyses suggested that most parasites observed at day 7 were probably recrudescences whereas most of those at day 28 were reinfections.

2021 ◽  
Vol 42 (2) ◽  
pp. 206-213
Author(s):  
G.Y. Benjamin ◽  
H.I. Inabo ◽  
M.H.I. Doko ◽  
B.O. Olayinka

Malaria is a disease of public health concern in Nigeria and sub-Saharan Africa. It is caused by intracellular parasites of the genus Plasmodium. The aim of this study was to detect genetic markers associated with Plasmodium falciparum drug resistance among malaria patients in Kaduna State, Nigeria. The study was a cross-sectional study that lasted from May 2018 to October 2018. Three hundred blood samples were collected from consenting individuals attending selected hospitals, in the three senatorial districts of Kaduna State, Nigeria. Structured questionnaire were used to obtain relevant data from study participants. The blood samples were screened for malaria parasites using microscopy and rapid diagnostic test kit. Polymerase Chain Reaction was used for detection of the drug resistance genes. Pfcrt, pfmdr1, pfdhfr, pfdhps and pfatpase6 genes were detected at expected amplicon sizes from the malaria positive samples. The pfatpase6 PCR amplicons were sequenced and a phylogenetic tree was created to determine their relatedness. Result showed that Pfcrt (80%) had the highest prevalence, followed by pfdhfr (60%), pfmdr1 (36%) and pfdhps (8%). Pfatpase6 was also detected in 73.3% of the samples, and a phylogenetic tree showed relatedness between the pfatpase6  sequences in this study and those deposited in the GenBank. In conclusion, the study detected that Plasmodium falciparum genes were associated with drug resistance to commonly used antimalarials.


2015 ◽  
Author(s):  
Lynn J. Rothschild ◽  
Daniel T. Greenberg ◽  
Jack R. Takahashi ◽  
Kirsten A. Thompson ◽  
Akshay J. Maheshwari ◽  
...  

The CRISPR/Cas9 system has revolutionized genome editing by providing unprecedented DNA-targeting specificity. Here we demonstrate that this system can be applied to facilitate efficient plasmid selection for transformation as well as selective gene insertion into plasmid vectors by cleaving unwanted plasmid byproducts after restriction enzyme digestion and ligation. Using fluorescent and chromogenic proteins as reporters, we demonstrate that CRISPR/Cas9 cleavage excludes unwanted ligation byproducts and increases transformation efficiency of desired inserts from 20% up to 97% ± 3%. This CRISPR/Cas9-Assisted Transformation-Efficient Reaction (CRATER) protocol is a novel, inexpensive, and convenient method for obtaining specific cloning products.


2020 ◽  
Author(s):  
Gabriel J. Foster ◽  
Katrina Button-Simons ◽  
Katelyn Vendrely ◽  
Jeanne Romero-Severson ◽  
Michael T. Ferdig

AbstractBackgroundThe cyclical nature of parasite gene expression in the intraerythrocytic development cycle (IDC) in human blood confounds the accurate detection of specific transcriptional differences due to drug resistance in Plasmodium falciparum. Here, we propose the use of cyclical regression covariates to eliminate the major confounding of developmentally driven transcriptional changes with changes due to drug response. We show that elimination of this confounding can reduce both Type I and Type II errors, and demonstrate the effect of approach on real data.ResultsWe apply this method to two publicly available datasets, and demonstrate its ability to reduce the potential confounding of differences in expression due the species-specific intraerythrocytic development cycle from strain-specific differences in drug response. We show that the application of cyclical regression covariates has minimal impact on the pool of transcripts identified as significantly different in a dataset generated from single timepoint clinical blood samples with low variance for developmental stage and a profound impact on another clinical data set with more variance among the samples for developmental stage.ConclusionsCyclical regression covariates have immediate application to studies where in-vitro synchronization of all samples to the same developmental timepoint is not feasible, primarily parasite transcriptome sequencing direct from clinical blood samples, a widely used approach to frontline detection of emerging drug resistance.


1995 ◽  
Vol 80 (3) ◽  
pp. 483-487 ◽  
Author(s):  
P.E. Depecoulas ◽  
L.K. Basco ◽  
B. Abdallah ◽  
M.K. Dje ◽  
J. Lebras ◽  
...  

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Claire Y. T. Wang ◽  
Emma L. Ballard ◽  
Zuleima Pava ◽  
Louise Marquart ◽  
Jane Gaydon ◽  
...  

Abstract Background Volunteer infection studies have become a standard model for evaluating drug efficacy against Plasmodium infections. Molecular techniques such as qPCR are used in these studies due to their ability to provide robust and accurate estimates of parasitaemia at increased sensitivity compared to microscopy. The validity and reliability of assays need to be ensured when used to evaluate the efficacy of candidate drugs in clinical trials. Methods A previously described 18S rRNA gene qPCR assay for quantifying Plasmodium falciparum in blood samples was evaluated. Assay performance characteristics including analytical sensitivity, reportable range, precision, accuracy and specificity were assessed using experimental data and data compiled from phase 1 volunteer infection studies conducted between 2013 and 2019. Guidelines for validation of laboratory-developed molecular assays were followed. Results The reportable range was 1.50 to 6.50 log10 parasites/mL with a limit of detection of 2.045 log10 parasites/mL of whole blood based on a parasite diluted standard series over this range. The assay was highly reproducible with minimal intra-assay (SD = 0.456 quantification cycle (Cq) units [0.137 log10 parasites/mL] over 21 replicates) and inter-assay (SD = 0.604 Cq units [0.182 log10 parasites/mL] over 786 qPCR runs) variability. Through an external quality assurance program, the QIMR assay was shown to generate accurate results (quantitative bias + 0.019 log10 parasites/mL against nominal values). Specificity was 100% after assessing 164 parasite-free human blood samples. Conclusions The 18S rRNA gene qPCR assay is specific and highly reproducible and can provide reliable and accurate parasite quantification. The assay is considered fit for use in evaluating drug efficacy in malaria clinical trials.


2006 ◽  
Vol 50 (10) ◽  
pp. 3343-3349 ◽  
Author(s):  
Halima Kaddouri ◽  
Serge Nakache ◽  
Sandrine Houzé ◽  
France Mentré ◽  
Jacques Le Bras

ABSTRACT The extension of drug resistance among malaria-causing Plasmodium falciparum parasites in Africa necessitates implementation of new combined therapeutic strategies. Drug susceptibility phenotyping requires precise measurements. Until recently, schizont maturation and isotopic in vitro assays were the only methods available, but their use was limited by technical constraints. This explains the revived interest in the development of replacement methods, such as the Plasmodium lactate dehydrogenase (pLDH) immunodetection assay. We evaluated a commercially controlled pLDH enzyme-linked immunosorbent assay (ELISA; the ELISA-Malaria antigen test; DiaMed AG, Cressier s/Morat, Switzerland) to assess drug susceptibility in a standard in vitro assay using fairly basic laboratory equipment to study the in vitro resistance of malaria parasites to major antimalarials. Five Plasmodium falciparum clones and 121 clinical African isolates collected during 2003 and 2004 were studied by the pLDH ELISA and the [8-3H]hypoxanthine isotopic assay as a reference with four antimalarials. Nonlinear regression with a maximum effect model was used to estimate the 50% inhibitory concentration (IC50) and its confidence intervals. The two methods were observed to have similar reproducibilities, but the pLDH ELISA demonstrated a higher sensitivity. The high correlation (r = 0.98) and the high phenotypic agreement (κ = 0.88) between the two methods allowed comparison by determination of the IC50s. Recently collected Plasmodium falciparum African isolates were tested by pLDH ELISA and showed drug resistance or decreased susceptibilities of 62% to chloroquine and 11.5% to the active metabolite of amodiaquine. No decreased susceptibility to lumefantrine or the active metabolite of artemisinin was detected. The availability of this simple and highly sensitive pLDH immunodetection assay will provide an easier method for drug susceptibility testing of malaria parasites.


Caryologia ◽  
1993 ◽  
Vol 46 (1) ◽  
pp. 63-69 ◽  
Author(s):  
Valeria Mirkova ◽  
Maria Ivanchenko ◽  
Lubomir Stoilov ◽  
Jordanka Zlatanova

Sign in / Sign up

Export Citation Format

Share Document