Modification of memory systems: some neurobiological aspects

1972 ◽  
Vol 5 (2) ◽  
pp. 163-186 ◽  
Author(s):  
James L. McGaugh ◽  
Steven F. Zornetzer ◽  
Paul E. Gold ◽  
Philip W. Landfield

The findings of clinical and experimental studies conducted over the past 25 years provide extensive evidence that in both laboratory animals and man memory can be modified by treatments which affect the central nervous system. Patients with head injuries may suffer from retrograde amnesia, a loss of memory for experiences which occur just prior to the onset of the injury. Findings of laboratory studies using animal subjects indicate that retrograde amnesia can be produced by a wide variety of experimental treatments.

1939 ◽  
Vol 70 (6) ◽  
pp. 565-582 ◽  
Author(s):  
Peter K. Olitsky

The results of investigations thus far carried out on experimental avian encephalomyelitis indicate that the virus of this newly described disease conforms to the group of definitely established viruses. It was essential to determine its taxonomy since the only prior record of its study (1) defines the infective agent as a virus because the usual cultural attempts failed to reveal a visible microorganism to be identified with it, and because the transmissible agent passed through Seitz and Berkefeld N filters. At the present time such determinants fail completely to satisfy the criteria for defining a virus and their acceptance would lead to the inclusion of certain filtrable microbic agents, difficult to reveal except by special cultural procedures, as viruses (10). The virus of avian encephalomyelitis is distinct from that of equine encephalomyelitis and is clearly a virus sui generis. The striking feature of its properties is its narrow range of host susceptibility—only the avian species are responsive to inoculation; ordinary laboratory animals are apparently resistant, even to large numbers of chicken cerebral infective doses. In addition, it is probable that its size is in the range of that of the equine virus. Studies also reveal that the virus is not easily sedimented by centrifugation (that is, at 5400 R.P.M. for one hour in the angle centrifuge and at 12,000 R.P.M. for one hour in the open air centrifuge) and is resistant to the action of glycerol and to drying. It is readily filtrable through Seitz one and two disc filters, through Berkefeld V and N candles, and is active in dilutions in broth up to 10–6. It passes through gradocol membranes of 73 mµ average pore diameter at least (the end-point has not as yet been definitely determined). An attack of the experimental disease leads to development of resistance to reinoculation and of antibodies in the serum. Old birds are reported as being refractory to infection, both in nature and in the laboratory (1, 2). Whether this resistance in mature animals is due to earlier exposure to infection, or to the development of structural or physiological barriers to invasion by the virus, remains still to be determined. Under experimental conditions, the route by which the virus acts uniformly to induce disease is the intracerebral. Yet in certain instances other peripheral ways of inoculation such as the intraperitoneal, subcutaneous, intradermal, intravenous, intramuscular, intrasciatic, may also be effective. Thus far, in limited experiments, feeding, or instilling nasally, or injecting into the vitreous body the infective agent has been ineffective. Whether the viral progression is axonal from peripheral sites is still to be determined; as should be also the question whether it multiplies in any of the organs other than the central nervous tissues. The virus was not detected in the blood during the period of incubation or during the acute phases of the experimental disease. So that unless it is found that other animals harbor the virus, or that still other sources of it exist as yet not disclosed, it is not likely that the disease is disseminated by a blood-sucking insect. The actual portal of entry and the factor in the spread of the disease in nature is still obscure, since the evidence here presented is still too incomplete to elucidate these problems. The pathological lesions induced are of interest. The neuronal reaction resembles that brought about by axonal disturbance (axon reaction, Nissl's or retrograde degeneration). The question may well be asked whether there may not be here an initial injury by the virus to the axonal process of the neuron, which in turn induces the retrograde changes in the cell body. This has as yet to be studied, as well as the possibility of viral progression along an axonal route with or without concurrent multiplication. The significance of the second major lesion in the central nervous system, namely, the generally marked perivascular reaction, is also still to be determined. Finally, the only observable and histopathological change in organs other than the central nervous tissues (in which we have not as yet noted the change) is in the hyperplasia of the normally present lymphoid islands. One is impressed by the prodigious numbers of lymphoid elements surrounding the vessels of the central nervous system and the question here is whether these hyperplastic areas serve as depots to supply the cells for this perivascular reaction.


2021 ◽  
Author(s):  
Patrick A. Lewis

Abstract Cellular control of vesicle biology and trafficking is critical for cell viability, with disruption of these pathways within the cells of the central nervous system resulting in neurodegeneration and disease. The past two decades have provided important insights into both the genetic and biological links between vesicle trafficking and neurodegeneration. In this essay, the pathways that have emerged as being critical for neuronal survival in the human brain will be discussed – illustrating the diversity of proteins and cellular events with three molecular case studies drawn from different neurological diseases.


2021 ◽  
Vol 20 (5) ◽  
pp. 500-508
Author(s):  
G. V. Pervushin

Despite the enormous incidence of malaria over the past 2 years, complications of this disease from the nervous system are relatively rare.


2019 ◽  
Vol 302 (11) ◽  
pp. 2049-2061
Author(s):  
Yoo Yeon Kim ◽  
Janet Ren Chao ◽  
Chulho Kim ◽  
Harry Jung ◽  
Boyoung Kim ◽  
...  

Physiology ◽  
2003 ◽  
Vol 18 (3) ◽  
pp. 109-114 ◽  
Author(s):  
Anthony R. Hobson ◽  
Qasim Aziz

To understand the pathophysiology of anomalous pain in functional gastrointestinal disorders, we must increase our understanding of how the central nervous system processes visceral pain. Over the past decade, novel application of functional brain imaging and electrophysiological techniques has given us the opportunity to study these processes in humans, and this review summarizes the current body of knowledge.


Endocrinology ◽  
2013 ◽  
Vol 154 (9) ◽  
pp. 3001-3007 ◽  
Author(s):  
Julie A. Chowen ◽  
Jesús Argente ◽  
Tamas L. Horvath

Glial cells, which constitute more than 50% of the mass of the central nervous system and greatly outnumber neurons, are at the vanguard of neuroendocrine research in metabolic control and obesity. Historically relegated to roles of structural support and protection, diverse functions have been gradually attributed to this heterogeneous class of cells with their protagonism in crescendo in all areas of neuroscience during the past decade. However, this dramatic increase in attention bestowed upon glial cells has also emphasized our vast lack of knowledge concerning many aspects of their physiological functions, let alone their participation in numerous pathologies. This minireview focuses on the recent advances in our understanding of how glial cells participate in the physiological regulation of appetite and systemic metabolism as well as their role in the pathophysiological response to poor nutrition and secondary complications associated with obesity. Moreover, we highlight some of the existing lagoons of knowledge in this increasingly important area of investigation.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Douglas M. Durrant ◽  
Jessica L. Williams ◽  
Brian P. Daniels ◽  
Robyn S. Klein

The discovery that chemokines and their receptors are expressed by a variety of cell types within the normal adult central nervous system (CNS) has led to an expansion of their repertoire as molecular interfaces between the immune and nervous systems. Thus, CNS chemokines are now divided into those molecules that regulate inflammatory cell migration into the CNS and those that initiate CNS repair from inflammation-mediated tissue damage. Work in our laboratory throughout the past decade has sought to elucidate how chemokines coordinate leukocyte entry and interactions at CNS endothelial barriers, under both homeostatic and inflammatory conditions, and how they promote repair within the CNS parenchyma. These studies have identified several chemokines, including CXCL12 and CXCL10, as critical regulators of leukocyte migration from perivascular locations. CXCL12 additionally plays an essential role in promoting remyelination of injured white matter. In both scenarios we have shown that chemokines serve as molecular links between inflammatory mediators and other effector molecules involved in neuroprotective processes.


2015 ◽  
Vol 10 (2) ◽  
pp. 157 ◽  
Author(s):  
Telma Santos ◽  
Joaquim Pinheiro ◽  
Pedro Barros ◽  
◽  
◽  
...  

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disorder of the central nervous system. Although MS has been known since the 19th century, cognitive impairment (CI) was only recognised as an important feature of MS over the past 30 years. The reason is that, until recently, MS was perceived exclusively as a white matter disease, and cognition was thought to depend solely on the cortex. This article aims to review the prevalence, risk factors, profile and diagnosis of CI in MS. Imaging correlates and treatment will also be briefly discussed.


2020 ◽  
Author(s):  
Alexei Korolev ◽  
Thomas Leisner

Abstract. Secondary ice production (SIP) plays a key role in the formation of ice particles in tropospheric clouds. Future improvement of the accuracy of the weather predictions and climate models relies on a proper description of SIP in numerical simulations. For now, laboratory studies remain a primary tool for developing physically based parameterizations for cloud modeling. Over the past seven decades, six different SIP-identifying mechanisms have emerged: (1) shattering during droplet freezing; (2) the rime splintering (Hallett-Mossop) process; (3) fragmentation due to ice-ice collision; (4) ice particle fragmentation due to thermal shock; (5) fragmentation of sublimating ice; (6) activation of ice nucleating particles in transient supersaturation around freezing drops. This work presents a critical review of the laboratory studies related to secondary ice production. While some of the six mechanisms have received little research attention, others consist of contradictory results obtained by different research groups. Unfortunately, despite past investigative efforts, the lack of consistency and the gaps in the accumulated knowledge hinder the development of quantitative descriptions of any of the six SIP mechanisms. The present work is aimed at identifying gaps in our knowledge on SIP and on stimulating further laboratory studies in obtaining a quantitative description of efficiencies for each of SIP mechanism.


Sign in / Sign up

Export Citation Format

Share Document