scholarly journals Dating the Volcanic Eruption at Thera

Radiocarbon ◽  
2004 ◽  
Vol 46 (1) ◽  
pp. 325-344 ◽  
Author(s):  
Christopher Bronk Ramsey ◽  
Sturt W Manning ◽  
Mariagrazia Galimberti

The eruption of the volcano at Thera (Santorini) in the Aegean Sea undoubtedly had a profound influence on the civilizations of the surrounding region. The date of the eruption has been a subject of much controversy because it must be linked into the established and intricate archaeological phasings of both the prehistoric Aegean and the wider east Mediterranean. Radiocarbon dating of material from the volcanic destruction layer itself can provide some evidence for the date of the eruption, but because of the shape of the calibration curve for the relevant period, the value of such dates relies on there being no biases in the data sets. However, by dating the material from phases earlier and later than the eruption, some of the problems of the calibration data set can be circumvented and the chronology for the region can be resolved with more certainty.In this paper, we draw together the evidence we have accumulated so far, including new data on the destruction layer itself and for the preceding cultural horizon at Thera, and from associated layers at Miletos in western Turkey. Using Bayesian models to synthesize the data and to identify outliers, we conclude from the most reliable 14C evidence (and using the INTCAL98 calibration data set) that the eruption of Thera occurred between 1663 and 1599 BC.

Author(s):  
Amr Mohamed ◽  
Alexander Y. Bigazzi

With an increasing focus on bicycling as a mode of urban transportation, there is a pressing need for improved tools for bicycle travel analysis and modeling. This paper introduces “biking schedules” to represent archetypal urban cycling dynamics, analogous to driving schedules used in vehicle emissions analysis. Three different methods of constructing biking schedules with both speed and road grade attributes are developed from the driving schedule literature. The methods are applied and compared using a demonstration data set of 55 h of 1-Hz on-road GPS data from three cyclists. Biking schedules are evaluated based on their ability to represent the speed dynamics, power output, and breathing rates of a calibration data set and then validated for different riders. The impact of using coarser 3, 5, and 10 s GPS logging intervals on the accuracy of the schedules is also evaluated. Results indicate that the best biking schedule construction method depends on the volume and resolution of the calibration data set. Overall, the biking schedules successfully represent most of the assessed characteristics of cycling dynamics in the calibration data set (speed, acceleration, grade, power, and breathing) within 5%. Future work will examine the precision of biking schedules constructed from larger data sets in more diverse cycling conditions and explore additional refinements to the construction methods. This research is considered a first step toward adopting biking schedules in bicycle travel analysis and modeling, and potential applications are discussed.


Radiocarbon ◽  
1998 ◽  
Vol 40 (3) ◽  
pp. 1117-1125 ◽  
Author(s):  
Bernd Kromer ◽  
Marco Spurk

We report radiocarbon calibration data based on the revised German oak and pine series. The age range of the absolutely dated German oak series has been extended to 10,430 cal bp. The German pine series is tentatively linked to the oak series by 14C, and now reaches back to 11,871 cal bp (±20 yr). The revisions of the tree-ring time scale of the German oak chronology solved long-standing apparent discrepancies in the mid-Holocene 14C calibration data sets. The calibration data set based on the floating German pine is now in close agreement with the Preboreal part of 14C calibration series obtained from most varve chronologies and corals.


Radiocarbon ◽  
2013 ◽  
Vol 55 (4) ◽  
pp. 2049-2058 ◽  
Author(s):  
Richard A Staff ◽  
Gordon Schlolaut ◽  
Christopher Bronk Ramsey ◽  
Fiona Brock ◽  
Charlotte L Bryant ◽  
...  

The varved sediment profile of Lake Suigetsu, central Japan, offers an ideal opportunity from which to derive a terrestrial record of atmospheric radiocarbon across the entire range of the 14C dating method. Previous work by Kitagawa and van der Plicht (1998a,b, 2000) provided such a data set; however, problems with the varve-based age scale of their SG93 sediment core precluded the use of this data set for 14C calibration purposes. Lake Suigetsu was re-cored in summer 2006, with the retrieval of overlapping sediment cores from 4 parallel boreholes enabling complete recovery of the sediment profile for the present “Suigetsu Varves 2006” project (Nakagawa et al. 2012). Over 550 14C determinations have been obtained from terrestrial plant macrofossils picked from the latter SG06 composite sediment core, which, coupled with the core's independent varve chronology, provides the only non-reservoir-corrected 14C calibration data set across the 14C dating range.Here, physical matching of archive U-channel sediment from SG93 to the continuous SG06 sediment profile is presented. We show the excellent agreement between the respective projects' 14C data sets, allowing the integration of 243 14C determinations from the original SG93 project into a composite Lake Suigetsu 14C calibration data set comprising 808 individual 14C determinations, spanning the last 52,800 cal yr.


Radiocarbon ◽  
2004 ◽  
Vol 46 (3) ◽  
pp. 1161-1187 ◽  
Author(s):  
Konrad A Hughen ◽  
John R Southon ◽  
Chanda J H Bertrand ◽  
Brian Frantz ◽  
Paula Zermeño

This paper describes the methods used to develop the Cariaco Basin PL07-58PC marine radiocarbon calibration data set. Background measurements are provided for the period when Cariaco samples were run, as well as revisions leading to the most recent version of the floating varve chronology. The floating Cariaco chronology has been anchored to an updated and expanded Preboreal pine tree-ring data set, with better estimates of uncertainty in the wiggle-match. Pending any further changes to the dendrochronology, these results represent the final Cariaco 58PC calibration data set.


Boreas ◽  
2010 ◽  
Vol 39 (4) ◽  
pp. 674-688 ◽  
Author(s):  
ANNE E. BJUNE ◽  
H. JOHN B. BIRKS ◽  
SYLVIA M. PEGLAR ◽  
ARVID ODLAND

Radiocarbon ◽  
1997 ◽  
Vol 40 (1) ◽  
pp. 483-494 ◽  
Author(s):  
Konrad A. Hughen ◽  
Jonathan T. Overpeck ◽  
Scott J. Lehman ◽  
Michaele Kashgarian ◽  
John R. Southon ◽  
...  

Varved sediments of the tropical Cariaco Basin provide a new 14C calibration data set for the period of deglaciation (10,000 to 14,500 years before present: 10–14.5 cal ka bp). Independent evaluations of the Cariaco Basin calendar and 14C chronologies were based on the agreement of varve ages with the GISP2 ice core layer chronology for similar high-resolution paleoclimate records, in addition to 14C age agreement with terrestrial 14C dates, even during large climatic changes. These assessments indicate that the Cariaco Basin 14C reservoir age remained stable throughout the Younger Dryas and late Allerød climatic events and that the varve and 14C chronologies provide an accurate alternative to existing calibrations based on coral U/Th dates. The Cariaco Basin calibration generally agrees with coral-derived calibrations but is more continuous and resolves century-scale details of 14C change not seen in the coral records. 14C plateaus can be identified at 9.6, 11.4, and 11.7 14C ka bp, in addition to a large, sloping “plateau” during the Younger Dryas (∼10 to 11 14C ka bp). Accounting for features such as these is crucial to determining the relative timing and rates of change during abrupt global climate changes of the last deglaciation.


2017 ◽  
Vol 9 (1) ◽  
pp. 211-220 ◽  
Author(s):  
Amelie Driemel ◽  
Eberhard Fahrbach ◽  
Gerd Rohardt ◽  
Agnieszka Beszczynska-Möller ◽  
Antje Boetius ◽  
...  

Abstract. Measuring temperature and salinity profiles in the world's oceans is crucial to understanding ocean dynamics and its influence on the heat budget, the water cycle, the marine environment and on our climate. Since 1983 the German research vessel and icebreaker Polarstern has been the platform of numerous CTD (conductivity, temperature, depth instrument) deployments in the Arctic and the Antarctic. We report on a unique data collection spanning 33 years of polar CTD data. In total 131 data sets (1 data set per cruise leg) containing data from 10 063 CTD casts are now freely available at doi:10.1594/PANGAEA.860066. During this long period five CTD types with different characteristics and accuracies have been used. Therefore the instruments and processing procedures (sensor calibration, data validation, etc.) are described in detail. This compilation is special not only with regard to the quantity but also the quality of the data – the latter indicated for each data set using defined quality codes. The complete data collection includes a number of repeated sections for which the quality code can be used to investigate and evaluate long-term changes. Beginning with 2010, the salinity measurements presented here are of the highest quality possible in this field owing to the introduction of the OPTIMARE Precision Salinometer.


2016 ◽  
Vol 12 (5) ◽  
pp. 1263-1280 ◽  
Author(s):  
Frazer Matthews-Bird ◽  
Stephen J. Brooks ◽  
Philip B. Holden ◽  
Encarni Montoya ◽  
William D. Gosling

Abstract. Presented here is the first chironomid calibration data set for tropical South America. Surface sediments were collected from 59 lakes across Bolivia (15 lakes), Peru (32 lakes), and Ecuador (12 lakes) between 2004 and 2013 over an altitudinal gradient from 150 m above sea level (a.s.l) to 4655 m a.s.l, between 0–17° S and 64–78° W. The study sites cover a mean annual temperature (MAT) gradient of 25 °C. In total, 55 chironomid taxa were identified in the 59 calibration data set lakes. When used as a single explanatory variable, MAT explains 12.9 % of the variance (λ1/λ2 =  1.431). Two inference models were developed using weighted averaging (WA) and Bayesian methods. The best-performing model using conventional statistical methods was a WA (inverse) model (R2jack =  0.890; RMSEPjack =  2.404 °C, RMSEP – root mean squared error of prediction; mean biasjack =  −0.017 °C; max biasjack =  4.665 °C). The Bayesian method produced a model with R2jack =  0.909, RMSEPjack =  2.373 °C, mean biasjack =  0.598 °C, and max biasjack =  3.158 °C. Both models were used to infer past temperatures from a ca. 3000-year record from the tropical Andes of Ecuador, Laguna Pindo. Inferred temperatures fluctuated around modern-day conditions but showed significant departures at certain intervals (ca. 1600 cal yr BP; ca. 3000–2500 cal yr BP). Both methods (WA and Bayesian) showed similar patterns of temperature variability; however, the magnitude of fluctuations differed. In general the WA method was more variable and often underestimated Holocene temperatures (by ca. −7 ± 2.5 °C relative to the modern period). The Bayesian method provided temperature anomaly estimates for cool periods that lay within the expected range of the Holocene (ca. −3 ± 3.4 °C). The error associated with both reconstructions is consistent with a constant temperature of 20 °C for the past 3000 years. We would caution, however, against an over-interpretation at this stage. The reconstruction can only currently be deemed qualitative and requires more research before quantitative estimates can be generated with confidence. Increasing the number, and spread, of lakes in the calibration data set would enable the detection of smaller climate signals.


Radiocarbon ◽  
2010 ◽  
Vol 52 (3) ◽  
pp. 953-961 ◽  
Author(s):  
Christopher Bronk Ramsey ◽  
Michael Dee ◽  
Sharen Lee ◽  
Takeshi Nakagawa ◽  
Richard A Staff

Calibration is a core element of radiocarbon dating and is undergoing rapid development on a number of different fronts. This is most obvious in the area of 14C archives suitable for calibration purposes, which are now demonstrating much greater coherence over the earlier age range of the technique. Of particular significance to this end is the development of purely terrestrial archives such as those from the Lake Suigetsu sedimentary profile and Kauri tree rings from New Zealand, in addition to the groundwater records from speleothems. Equally important, however, is the development of statistical tools that can be used with, and help develop, such calibration data. In the context of sedimentary deposition, age-depth modeling provides a very useful way to analyze series of measurements from cores, with or without the presence of additional varve information. New methods are under development, making use of model averaging, that generate more robust age models. In addition, all calibration requires a coherent approach to outliers, for both single samples and where entire data sets might be offset relative to the calibration curve. This paper looks at current developments in these areas.


2014 ◽  
Vol 14 (3) ◽  
pp. 1635-1648 ◽  
Author(s):  
A. Redondas ◽  
R. Evans ◽  
R. Stuebi ◽  
U. Köhler ◽  
M. Weber

Abstract. The primary ground-based instruments used to report total column ozone (TOC) are Brewer and Dobson spectrophotometers in separate networks. These instruments make measurements of the UV irradiances, and through a well-defined process, a TOC value is produced. Inherent to the algorithm is the use of a laboratory-determined cross-section data set. We used five ozone cross-section data sets: three data sets that are based on measurements of Bass and Paur; one derived from Daumont, Brion and Malicet (DBM); and a new set determined by Institute of Experimental Physics (IUP), University of Bremen. The three Bass and Paur (1985) sets are as follows: quadratic temperature coefficients from the IGACO (a glossary is provided in Appendix A) web page (IGQ4), the Brewer network operational calibration set (BOp), and the set used by Bernhard et al. (2005) in the reanalysis of the Dobson absorption coefficient values (B05). The ozone absorption coefficients for Brewer and Dobson instruments are then calculated using the normal Brewer operative method, which is essentially the same as that used for Dobson instruments. Considering the standard TOC algorithm for the Brewer instruments and comparing to the Brewer standard operational calibration data set, using the slit functions for the individual instruments, we find the IUP data set changes the calculated TOC by −0.5%, the DBM data set changes the calculated TOC by −3.2%, and the IGQ4 data set at −45 °C changes the calculated TOC by +1.3%. Considering the standard algorithm for the Dobson instruments, and comparing to results using the official 1992 ozone absorption coefficients values and the single set of slit functions defined for all Dobson instruments, the calculated TOC changes by +1%, with little variation depending on which data set is used. We applied the changes to the European Dobson and Brewer reference instruments during the Izaña 2012 Absolute Calibration Campaign. With the application of a common Langley calibration and the IUP cross section, the differences between Brewer and Dobson data sets vanish, whereas using those of Bass and Paur and DBM produces differences of 1.5 and 2%, respectively. A study of the temperature dependence of these cross-section data sets is presented using the Arosa, Switzerland, total ozone record of 2003–2006, obtained from two Brewer-type instruments and one Dobson-type instrument, combined with the stratospheric ozone and temperature profiles from the Payerne soundings in the same period. The seasonal dependence of the differences between the results from the various instruments is greatly reduced with the application of temperature-dependent absorption coefficients, with the greatest reduction obtained using the IUP data set.


Sign in / Sign up

Export Citation Format

Share Document