Weed Control in Sugarbeets (Beta vulgaris) by Mixtures of Cycloate and Ethofumesate

Weed Science ◽  
1979 ◽  
Vol 27 (5) ◽  
pp. 516-519 ◽  
Author(s):  
E. E. Schweizer

Response of weeds and sugarbeets (Beta vulgaris L. ‘Mono Hy D2′) to preplanting treatments of mixtures of cycloate (S-ethyl N-ethylthiocyclohexanecarbamate) and ethofumesate [(±)-2-ethoxy-2,3-dihydro-3,3-dimethyl-5-benzofuranyl methanesulfonate] was evaluated in five field studies. A mixture containing 1.7 kg/ha of each herbicide reduced the stand of common lambsquarters (Chenopodium album L.) 90%, green foxtail [Setaria viridis (L.) Beauv.] and yellow foxtail [Setaria lutescens (Weigel) Hubb.] 97 to 99%, kochia [Kochia scoparia (L.) Schrad.] 64 to 77%, and redroot pigweed (Amaranthus retroflexus L.) 82 to 99%. The response of weeds to preplanting applications of mixtures of cycloate and ethofumesate was independent of soil texture, whereas response of sugarbeets was dependent on soil texture. The herbicide mixtures significantly reduced the pre-thinning stand of sugarbeets and root and sucrose yields on two sandy loams, but not on a clay loam.

Weed Science ◽  
1981 ◽  
Vol 29 (1) ◽  
pp. 93-98 ◽  
Author(s):  
R. G. Wilson ◽  
F. N. Anderson

An electrical discharge system (EDS) was evaluated in field studies conducted in 1977 through 1979 in western Nebraska for its ability to control weed escapes in sugarbeets (Beta vulgarisL. ‘Mono Hy D2′). Nine weeks after sugarbeets were planted, kochia [Kochia scoparia(L.) Schrad.] had attained a height above sugarbeets sufficient for EDS treatment. Redroot pigweed (Amaranthus retroflexusL.) and common lambsquarters (Chenopodium albumL.) generally attained sufficient height above sugarbeets 11 and 13 weeks after sugarbeet planting. Sugarbeet root yields were reduced 40, 20, and 10% from competition by kochia, common lambsquarters, and redroot pigweed, respectively. Treatment of kochia, redroot pigweed, and common lambsquarters with EDS in some cases resulted in a reduction in weed height. The EDS treatments reduced the stand of all weeds 32, 39, and 47% for 1977, 1978, and 1979, respectively. Although the EDS treatments failed to kill many weeds, it did suppress the competitive ability of the three weeds to the extent that sugarbeet yields were higher in areas receiving EDS treatments than areas receiving no EDS treatment.


Weed Science ◽  
1981 ◽  
Vol 29 (1) ◽  
pp. 128-133 ◽  
Author(s):  
E. E. Schweizer

Interference within a mixture of equal densities of common lambsquarters (Chenopodium albumL.), kochia [Kochia scoparia(L.) Schrad.], and redroot pigweed (Amaranthus retroflexusL.) in sugarbeets (Beta vulgarisL. ‘Mono Hy D2’) was determined in a 3-yr field study. Yield of sugarbeet roots and sucrose per hectare decreased as intensity of competition from equal populations of these three weeds increased. At densities of 6, 12, 18, and 24 broadleaf weeds per 30 m of row, root yields were reduced 13, 24, 33, and 39%, respectively. Sucrose yields were reduced similarly. Fewer than three weeds per 30 m of row did not significantly reduce root yield. Reduction in root yield (Y) of sugarbeets caused by specific densities (X) of the three broadleaf weeds was predicted by using the linear equation Y = 1.64 + 1.88 X. The actual reductions in yield were always less than the predicted reductions when this equation was tested against 36 weed control systems because the competitive ability of broadleaf weeds that were treated with herbicides, but not killed, was suppressed during the growing season. By harvest, broadleaf weeds present in weed-control-system plots weighed an average of 75 to 85% less than broadleaf weeds present in nontreated plots.


Weed Science ◽  
1982 ◽  
Vol 30 (3) ◽  
pp. 291-296 ◽  
Author(s):  
Edward E. Schweizer ◽  
Larry D. Bridge

Field experiments were conducted to study the feasibility of applying glyphosate [N-(phosphonomethyl) glycine] postemergence with a recirculating sprayer and a vertical roller for the control of common lambsquarters (Chenopodium albumL.), common sunflower (Helianthus annuusL.), kochia [Kochia scoparia(L.) Schrad.], redroot pigweed (Amaranthus retroflexusL.), and velvetleaf (Abutilon theophrastiMedic.) in sugarbeets (Beta vulgarisL.). Glyphosate was applied twice each year at 1.7 kg/ha with a recirculating sprayer in 1977 and 1978, or twice as a 20% (v/v) solution with a vertical-roller applicator in 1979. By harvest, 70 to 74% of the total population of treated common sunflower, kochia, and redroot pigweed, 61% of the common lambsquarters, and 30% of the velvetleaf was dead. Root yields in glyphosate-treated plots, when averaged over 3 yr, were increased 5800, 8500, 12 500, and 13400 kg/ha at densities of 6, 12, 18, and 24 broadleaf weeds (equal densities of common lambsquarters, kochia, and redroot pigweed)/30m of row, respectively. Where equal densities of common sunflower and velvetleaf competed with sugarbeets, root yields in glyphosate-treated plots, when averaged over 2 yr, were increased 4400, 11900, 11700, and 10700 kg/ha, respectively, at these same densities.


Weed Science ◽  
1981 ◽  
Vol 29 (3) ◽  
pp. 349-355 ◽  
Author(s):  
Richard Behrens ◽  
M. A. Elakkad

To study rainfall effects, simulated rainfall was applied to velvetleaf (Abutilon theophrastiMedic.), common lambsquarters (Chenopodium albumL.), wild mustard [Brassica kaber(DC.) L. C. Wheeler var.pinnatifida(Stokes) L. C. Wheeler], soybean [Glycine max(L.) Merr. ‘Hodgson’], and redroot pigweed (Amaranthus retroflexusL.) in greenhouse and field studies following foliar applications of the alkanolamine (AKA) salt or the butoxyethanol (BE) ester of 2,4-D [(2,4-dichlorophenoxy)acetic acid] at rates that induced equivalent levels of phytotoxicity. Simulated rainfall less than 1 min after herbicide treatment reduced the phytotoxicity of the AKA salt of 2,4-D to a much greater extent than that of the BE ester with effects ranging from elimination of all injury from the AKA salt to soybeans to no reduction in phytotoxicity of the BE ester to common lambsquarters. The quantity of simulated rainfall required to induce maximum reductions in phytotoxicity of the BE ester ranged from 1 mm on common lambsquarters to 15 mm on velvetleaf. The time interval from 2,4-D treatment until rainfall required to achieve a phytotoxic response level of 80% of that attained without rainfall varied greatly among plant species and herbicide formulations; ranging from less than 1 min for the BE ester on common lambsquarters to more than 24 h for the AKA salt on velvetleaf. The addition of an alkylarylpolyoxyethylene glycol surfactant to 2,4-D spray solutions reduced herbicide rates required to induce equivalent levels of phytotoxicity, increased losses in phytotoxicity of the BE ester caused by rainfall, and reduced the time interval from treatment to rainfall required to attain an equivalent level of phytotoxicity with the AKA salt.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 971D-972
Author(s):  
Harlene M. Hatterman-Valenti ◽  
Carrie E. Schumacher ◽  
Collin P. Auwarter ◽  
Paul E. Hendrickson

Field studies were conducted at Absaraka, Carrington, and Oakes, N.D., in 2005 to evaluate early season broadleaf weed control and onion (Allium cepa L.) injury with herbicides applied preemergence to the crop. DCPA is a common preemergence herbicide used in onion. However, DCPA can be uneconomical in most high-weed situations, or the usage may be restricted due to possible groundwater contamination. Potential substitutes evaluated were bromoxynil, dimethenamid-P, and pendimethalin. Main broadleaf weeds were redroot pigweed (Amaranthus retroflexus L.) and common lambsquarters (Chenopodium album L.). In general, all herbicides, except bromoxynil, provided acceptable broadleaf weed control 4 weeks after treatment. The highest herbicide rate provided greater weed control compared with the lowest rate for each herbicide. However, onion height was also reduced with the highest herbicide rate. In addition, the two highest rates of dimethenamid-P reduced the onion stand compared with the untreated. A postemergence application of bromoxynil + oxyfluorfen + pendimethalin to onion at the four- to five-leaf stage controlled the few broadleaf weeds that escaped the preemergence treatments and provided residual control of mid- and late-season germinating broadleaf weeds at two of the three locations. Intense germination of redroot pigweed during July at the Oakes location reduced onion yield with all treatments compared with the hand-weeded check. In contrast, total onion yields with all herbicide treatments except the high rate of dimethenamid-P were similar to the hand-weeded check at Absaraka and Carrington.


2002 ◽  
Vol 82 (4) ◽  
pp. 789-796 ◽  
Author(s):  
N. H. Furness ◽  
M. K. Upadhyaya

Differential morphological sensitivity of weed species to ultraviolet-B (UV-B) radiation (290–320 nm) may alter competitive relationships among weeds and associated crop species as the level of this radiation changes. In order to determine relative sensitivity of common chickweed [Stellaria media (L.) Vill.], green foxtail (Setaria viridis L.), lady's-thumb (Polygonum persicaria L.), lamb's-quarters (Chenopodium album L.), redroot pigweed (Amaranthus retroflexus L.), and shepherd's-purse (Capsella bursa-pastoris L.) to this radiation, seedlings were grown under 0, 7, and 11 kJ m-2 d-1 of biologically effective UV-B radiation in a greenhouse for 6 wk. The influence of UV-B radiation on seedling growth and morphology was investigated. UV-B radiation reduced shoot height in green foxtail (by up to 41%), lamb's-quarters, and redroot pigweed, and increased tillering in green foxtail seedlings. Leaf area and leaf biomass in common chickweed, green foxtail, lamb's-quarters, and shepherd's-purse, and stalk biomass in common chickweed, green foxtail, lamb's-quarters, redroot pigweed and shepherd's-purse declined in response to UV-B radiation. In common chickweed, leaf area was reduced by 74% at 11 kJ m-2 d-1. Root biomass was reduced by UV-B radiation in all species (up to 68% at 11 kJ m-2 d-1 in common chickweed) except lady's-thumb. Specific leaf weight increased and leaf area ratio declined in response to UV-B radiation in common chickweed and shepherd's-purse. Exposure to UV-B radiation increased the leaf weight ratio in common chickweed. Shoot:root ratios increased in response to UV-B radiation in common chickweed and redroot pigweed. Scanning electron microscopy revealed collapsed epidermal cells in occasional necrotic regions on adaxial leaf surfaces of redroot pigweed grown under 11 kJ m-2 d-1 UV-B radiation. Morphology and growth of lady's-thumb were not affected by UV-B radiation. This study suggests that common agricultural weeds have differential morphological and growth responses to UV-B-enhanced environments. Sensitivity to UV-B radiation was greatest for common chickweed and least for lady's-thumb and redroot pigweed. Key words: ultraviolet-B, Amaranthus retroflexus, Capsella bursa-pastoris, Chenopodium album, Polygonum persicaria, Setaria viridis, Stellaria media


Weed Science ◽  
1981 ◽  
Vol 29 (5) ◽  
pp. 577-586 ◽  
Author(s):  
Orvin C. Burnside ◽  
Charles R. Fenster ◽  
Larry L. Evetts ◽  
Robert F. Mumm

An experiment was initiated in 1970 and continued through 1979 by exhuming and germinating seed of 12 economic weed species buried beneath 23 cm of soil in eastern and western Nebraska. Loss in germination of exhumed seeds over years is mathematically characterized by the formula for the rectangular hyperbola, which represents many shapes of curves that have zero as their lower limit. Of the 12 weed species, only fall panicum (Panicum dichotomiflorumMichx.) and redroot pigweed (Amaranthus retroflexusL.) seed germination did not drop significantly over the 10-yr burial period. Germination of redroot pigweed seed was higher when buried in eastern Nebraska, but was higher for smooth groundcherry (Physalis subglabrataMack&Bush.) and velvetleaf (Abutilon theophrastiMedic.) when buried in western Nebraska. Germination of the other nine species were not affected by burial location. The 12 weed species can be ranked as those showing most to least rapid loss of germination during burial for 10 yr as follows: honeyvine milkweed [Ampelamus albidus(Nutt.) Britt.], hemp dogbane (Apocynum cannabinumL.), kochia [Kochia scoparia(L.) Schrad.], sunflower (Helianthus annumL.), large crabgrass [Digitaria sanguinalis(L.) Scop.], common milkweed (Asclepias syriacaL.), musk thistle (Carduus nutansL.), velvetleaf, fall panicum, redroot pigweed, green foxtail [Setaria viridis(L.) Beauv.], and smooth groundcherry.


2018 ◽  
Vol 10 (10) ◽  
pp. 32
Author(s):  
O. Adewale Osipitan ◽  
Jon E. Scott ◽  
Stevan Z. Knezevic

Tolpyralate, an HPPD (4-hydroxyphenyl-pyruvate dioxygenase) inhibitor, is a relatively new herbicide for weed control in corn. Field studies were conducted in 2015 and 2016 to evaluate the effective dose of tolpyralate applied alone or mixed with atrazine for weed control in corn. The treatments included seven rates (0, 5, 20, 29, 40, 50 and 100 g ai ha-1) of tolpyralate applied alone or mixed with a constant rate (560 g ai ha-1) of atrazine. The evaluated weed species were common waterhemp (Amaranthus rudis Sauer), common lambsquarters (Chenopodium album L.), velvetleaf (Abutilon theophrasti Medik), henbit (Lamium amplexicaule L.) and green foxtail (Setaria viridis L.). Overall, POST-application of tolpyralate resulted in 58-94% visual weed control when applied alone; whereas, addition of atrazine provided 71-100% control of same species. Calculated dose of 19-31 g ai ha-1 (ED90) of tolpyralate applied alone provided 90% visual control of waterhemp, lambsquaters, henbit, and velvetleaf. Whereas, addition of atrazine resulted in significantly lower dose of 11-17 g ai ha-1 for the same level of control, suggesting synergy between the two herbicides.


2016 ◽  
Vol 69 (1) ◽  
Author(s):  
Krzysztof Domaradzki ◽  
Anna Jezierska-Domaradzka

<p>Field studies were carried out in 1989–1995 and 2006–2012 on plantations of sugar beet (<em>Beta vulgaris</em> L. subsp. <em>vulgaris</em>). During this period, 542 phytosociological relevés were made using the Braun-Blanquet method. In total, 46 weed species were found. In 1989–1995, the occurrence of 36 segetal species was reported. The highest cover indices were determined for <em>Chenopodium album</em> and <em>Amaranthus retroflexus</em>. <em>Galium aparine</em>, <em>Echinochloa crus-galli</em>, and <em>Elymus repens</em> were the dominant species, as well. Analysis of the frequency of occurrence revealed one constant species (<em>Chenopodium album</em>), two frequent species (<em>Amaranthus retroflexus</em> and <em>Galium aparine</em>), and two medium-frequent species (<em>Echinochloa crus-galli</em> and <em>Matricaria maritima</em> ssp. <em>inodora</em>).</p><p>In 2006–2012, the occurrence of 40 weed species on the sugar beet plantations was recorded. The plantations were clearly dominated by <em>Chenopodium album</em>, accompanied by <em>Polygonum persicaria</em> and <em>Polygonum lapathifolium</em> ssp. <em>lapathifolium</em>. Other dominant species comprised <em>Setaria viridis</em>, <em>Galinsoga parviflora</em>, <em>Brassica napus</em> ssp. <em>napus</em>, and <em>Fallopia convolvulus</em>. The <em>Chenopodium album</em> was a constant component of the sugar beet plantations. In turn, no frequent species were observed and six medium-frequent species were found (<em>Setaria viridis</em>, <em>Galinsoga parviflora</em>, <em>Brassica napus</em> ssp. <em>napus</em>, <em>Echinochloa crus-galli</em>, <em>Amaranthus retroflexus</em>, and <em>Capsella bursa-pastoris</em>).</p><p>Noteworthy, the presence of previously unreported species, e.g., <em>Abutilon theophrasti</em>, <em>Hyoscyamus niger</em>, or <em>Artemisia vulgaris</em>, was revealed. These species are rare components in sugar beet crops. A reverse phenomenon, i.e., the disappearance of some species such as <em>Euphorbia helioscopia</em>, <em>Malva neglecta</em>, <em>Rumex acetosella</em>, <em>Sinapis arvensis</em>, or <em>Sisymbrium officinale</em>, was also observed.</p>


Weed Science ◽  
1979 ◽  
Vol 27 (1) ◽  
pp. 28-31 ◽  
Author(s):  
E. E. Schweizer

Dinitramine (N4,N4-diethyl-α,α,α-trifluoro-3,5-dinitrotoluene-2,4-diamine) applied at 0.37 kg/ha controlled black nightshade (Solanum nigrumL.) better than did trifluralin (α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine) at 0.56 kg/ha. Dinitramine applied at 0.37 kg/ha was equal to 0.56 kg/ha of trifluralin for control of green foxtail [Setaria viridis(L.) Beauv.], yellow foxtail [Setaria glauca(L.) Beauv.], and redroot pigweed (Amaranthus retroflexusL.). Dinitramine produced more root aberrations in sugarbeets (Beta vulgarisL. ‘Mono Hy D2′) than did trifluralin when sprayed on nonexposed or exposed hypotcotyledonary tissues of seedlings. When soil surrounded most of the hypocotyls at the time of application, 0.56 kg/ha of dinitramine affected 57 to 87% of the roots, whereas the same rate of trifluralin affected 1 to 8% of the roots. When the hypocotyls were exposed at the time of application, 100% of the roots were affected by dinitramine compared to 25% of all roots treated with trifluralin. Dinitramine applied at 0.37, 0.42, and 0.56 kg/ha lowered the quality and yield of sugarbeet roots, with the highest rate significantly reducing percentage purity, percentage sucrose, and recoverable sucrose. Trifluralin did not affect these parameters.


Sign in / Sign up

Export Citation Format

Share Document