Action of EMD-IT 5914 on Chloroplasts

Weed Science ◽  
1978 ◽  
Vol 26 (3) ◽  
pp. 292-296 ◽  
Author(s):  
K. J. Kunert ◽  
P. Böger

The experimental herbicide EMD-IT 5914 [difunon, 5-dimethyl-amino-methylene-2-oxo-4-phenyl-2,5-dihydrofurane-carbonitrile-(3)] was applied to unicellular algae and its effect on growth, oxygen evolution and photosynthetic electron transport measured. Inhibition of biosynthesis of chloroplast pigments was evaluated in relation to the activities of porphobilinogenase and δ-aminolevulinic acid dehydratase. The only direct effect of the herbicide was an inhibition of carotenoid biosynthesis but not of photosynthetic electron transport or enzymic activities connected with porphyrin biosynthesis. Chlorophyll bleaching is considered to be a secondary process.

1980 ◽  
Vol 35 (9-10) ◽  
pp. 770-775 ◽  
Author(s):  
E. F. Elstner ◽  
H. P. Fischer ◽  
W. Osswald ◽  
G. Kwiatkowski

Abstract Oxygen reduction by chloroplast lamellae is catalyzed by low potential redox dyes with E′0 values between -0 .3 8 V and -0 .6 V. Compounds of E′0 values of -0 .6 7 V and lower are inactive. In subchloroplast particles with an active photosystem I but devoid of photosynthetic electron transport between the two photosystems, the active redox compounds enhance chlorophyll bleaching, superoxide formation and ethane production independent on exogenous substrates or electron donors. The activities of these compounds decrease with decreasing redox potential, with one exception: 1-methyl-4,4′-bipyridini urn bromide with an E′0 value of lower -1 V (and thus no electron acceptor of photosystem I in chloroplast lamellae with intact electron transport) stimulates light dependent superoxide formation and unsaturated fatty acid peroxidation in sub­ chloroplast particles, maximal rates appearing after almost complete chlorophyll bleaching. Since this activity is not visible with compounds with redox potentials below -0 .6 V lacking the nitrogen atom at the 1-position of the pyridinium substituent, we assume that 1 -methyl-4,4′-bi-pyridinium bromide is “activated” by a yet unknown light reaction.


2020 ◽  
Author(s):  
Azeez Beebo ◽  
Ahmad Zia ◽  
Christopher R. Kinzel ◽  
Andrei Herdean ◽  
Karim Bouhidel ◽  
...  

SUMMARYPhotosynthetic oxygen evolution by photosystem II requires water supply into the chloroplast to reach the thylakoid lumen. A rapid water flow is also required into the chloroplast for optimal oxygen evolution and to overcome osmotic stress. The mechanisms governing water transport in chloroplasts are largely unexplored. Previous proteomics indicated the presence of three aquaporins from the tonoplast intrinsic protein (TIP) family, TIP1;1, TIP1;2 and TIP2;1, in chloroplast membranes of Arabidopsis thaliana. Here we revisited their location and studied their role in chloroplasts. Localization experiments indicated that TIP2;1 resides in the thylakoid, whereas TIP1;2 is present in both thylakoid and envelope membranes. Mutants lacking TIP1;2 and/or TIP2;1 did not display a macroscopic phenotype when grown under standard conditions. The mutant chloroplasts and thylakoids underwent less volume changes than the corresponding wild type preparations upon osmotic treatment and in the light. Significantly reduced rates of photosynthetic electron transport were obtained in the mutant leaves, with implications on the CO2 fixation rates. However, electron transport rates did not significantly differ between mutants and wild type when isolated thylakoids were examined. Less acidification of the thylakoid lumen was measured in mutants thylakoids, resulting in a slower induction of delta pH-dependent photoprotective mechanisms. These results identify TIP1;2 and TIP2;1 as chloroplast proteins and highlight their importance for osmoregulation and optimal photosynthesis. A third aquaporin, TIP1;1, is present in the chloroplast envelope, and may play role in photosynthesis under excessive light conditions, as based on the weak photosynthetic phenotype of its mutant.


1977 ◽  
Vol 32 (7-8) ◽  
pp. 605-610 ◽  
Author(s):  
Gerhard Vierke ◽  
Peter Struckmeier

Abstract Incubation of class II chloroplasts of spinach with copper in the light at pH = 8 in concentrations that inhibit oxygen evolution results in the formation of a copper (II) protein complex with the photosynthetic membrane. The EPR spectra indicate that the four nearest ligands to Cu(II) consist of three oxygen atoms and one nitrogen atom. The copper (II) protein appears to be pre­ dominantly associated with photosystem II. The formation of this protein as measured by the EPR signal amplitude of its room temperature spectrum correlates with the inhibition of oxygen evolution and of electron transport within photosystem I. This result indicates that the inhibition of photosynthetic electron transport by copper may be due to the formation of a copper (II) chelate with a membrane protein.


1982 ◽  
Vol 37 (3-4) ◽  
pp. 268-275 ◽  
Author(s):  
K. H. Grumbach

Abstract Diuron and bentazon are very strong inhibitors of the photosynthetic electron transport in isolated radish chloroplasts. The chlorosis producing herbicide SAN 6706 also inhibited the photosystem II dependent oxygen evolution. Aminotriazole had no effect. The inhibitor concentration for 50% inhibition of photosystem II activity was 10-7 m for diuron and 10-4 m for bentazon and SAN 6706 respectively.Diuron and bentazon quenched the chlorophyll a fluorescence transients in isolated radish chloroplasts drastically, while aminotriazole was not effective. It was of particular interest that the bleaching herbicide SAN 6706 inhibited photosystem II dependent oxygen evolution in a similar concentration as bentazon but had no effect on the chlorophyll a-fluorescence transients suggesting that SAN 6706 is not binding to the same site of the electron transport chain as diuron and bentazon.Apart from their direct influence on electron transport in isolated photosynthetically active chloroplasts the photosystem II and bleaching herbicides assayed also strongly affected photosynthesis in radish seedlings that were grown in the presence of the herbicides for a long time. As already obtained using isolated chloroplasts, photosystem II dependent oxygen evolution like the chlorophyll a fluorescence transients were strongly inhibited by the photosystem II herbicides diuron and bentazon. A reduction but no inhibition of photosystem II activity was observed in plants that were grown in the presence of aminotriazole. The pyridazinone SAN 6706 was behaving contradictory. In partly green plants photosystem II activity was still maintained and even higher than in untreated plants while in albinistic plants no photosynthetic activity was detected.


Weed Science ◽  
1978 ◽  
Vol 26 (5) ◽  
pp. 440-443 ◽  
Author(s):  
C. N. Giannopolitis ◽  
G. S. Ayers

Representative herbicides of the substituted ureas, uracils,s-triazines, benzonitriles, and bipyridyls, which are potent inhibitors of photosynthetic electron transport, markedly accelerated photooxidations (chlorophyll bleaching and lipid peroxidation) normally occurring in isolated intact chloroplasts. Other herbicides, which are not potent inhibitors of photosynthesis, did not accelerate photooxidations. The photooxidations, whether in the presence or absence of herbicides, were completely prevented by exogenously supplied NADH or NADPH but not by sucrose or mannitol. Herbicide-induced injury to barley(Hordeum vulgareL.) seedlings treated with paraquat (1,1′-dimethyl-4,4′-bipyridinium ion) was diminished by allowing the seedlings to absorb NADPH. These results provide additional support to the hypothesis that depletion of the source of reducing potential (NADPH) is responsible for chloroplast photooxidations and plant death following treatment with photosynthesis-inhibiting herbicides.


Sign in / Sign up

Export Citation Format

Share Document