Herbicide and Phosphorus Influence on Root Absorption of Amiben and Atrazine

Weed Science ◽  
1970 ◽  
Vol 18 (3) ◽  
pp. 357-359 ◽  
Author(s):  
Jerry D. Doll ◽  
Donald Penner ◽  
William F. Meggitt

In the presence of relatively high but non-toxic levels of phosphate, the suppression of corn (Zea mays L.) or squash (Cucurbita maxima Duchesne) seedling growth in the dark by 3-amino-2,5-dichlorobenzoic acid (amiben) or 2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine (atrazine) was enhanced. This effect was not due to increased uptake of either herbicide in the presence of the phosphate by roots of corn, squash, soybeans (Glycine max (L.) Merr.), or redroot pigweed (Amaranthus retroflexus L.). A proportional decrease in herbicide uptake with increasing herbicide concentration was most evident for amiben and atrazine uptake by the roots of soybean plants grown in the light.

Weed Science ◽  
1994 ◽  
Vol 42 (4) ◽  
pp. 568-573 ◽  
Author(s):  
Stevan Z. Knezevic ◽  
Stephan F. Weise ◽  
Clarence J. Swanton

Redroot pigweed is a major weed in corn throughout Ontario. Field experiments were conducted at two locations in 1991 and 1992 to determine the influence of selected densities and emergence times of redroot pigweed on corn growth and grain yield. Redroot pigweed densities of 0.5, 1, 2, 4 and 8 plants per m of row were established within 12.5 cm on either side of the corn row. In both years, redroot pigweed seeds were planted concurrently and with corn at the 3- to 5-leaf stage of corn growth. A density of 0.5 redroot pigweed per m of row from the first (earlier) emergence date of pigweed (in most cases, up to the 4-leaf stage of corn) or four redroot pigweed per m of row from the second (later) emergence date of pigweed (in most cases, between the 4- and 7-leaf stage of corn) reduced corn yield by 5%. Redroot pigweed emerging after the 7-leaf stage of corn growth did not reduce yield. Redroot pigweed seed production was dependent upon its density and time of emergence. The time of redroot pigweed emergence, relative to corn, may be more important than its density in assessing the need for postemergence control.


Weed Science ◽  
1985 ◽  
Vol 33 (5) ◽  
pp. 669-672 ◽  
Author(s):  
Janet L. Shurtleff ◽  
Harold D. Coble

The influence of relative planting date on the growth of common cocklebur (Xanthium pensylvanicumWallr. ♯ XANST), common ragweed (Ambrosia artemesiifoliaL. ♯ AMBEL), sicklepod (Cassia obtusifoliaL. ♯ CASOB), and redroot pigweed (Amaranthus retroflexusL. ♯ AMARE) grown in competition with soybean [Glycine max(L.) Merr. ‘Bragg’] was studied in the greenhouse. Increases in dry matter and height were slower for the five weed species than for soybean throughout the period of the study. The root: shoot ratio of soybean was the highest of any plant in the study, while common ragweed, common cocklebur, common lambsquarters, and sicklepod were intermediate, and redroot pigweed was the lowest. Soybean dry weight was always reduced when grown in competition with a weed. Soybean dry-matter production was reduced most when weeds were planted 2 weeks before soybean, especially with common cocklebur and common lambsquarters. Weed dry-matter content was severely reduced when the weed seed were planted simultaneously with or following soybean. Soybean height was usually reduced by competition with the weeds. The height of common ragweed was increased, however, when planted simultaneously with soybean. Common lambsquarters, redroot pigweed, and common ragweed heights were increased when planted 2 weeks prior to soybean.


1993 ◽  
Vol 3 (2) ◽  
pp. 105-110 ◽  
Author(s):  
Penny Beecroft ◽  
John N. A. Lott

AbstractSeeds/grains of four species were imbibed for up to 90 minutes half embedded in agar. The agar was then freeze-dried and treated with a chromatographic reagent to detect the sites of potassium leakage from the imbibing seeds/grains. Soybean (Glycine max cv. Marathon) and pea (Pisum sativum cv. Little Marvel) leaked K across the entire surface of their testas. Aged pea seeds leaked much more extensively than seeds of a fresher lot of the same cultivar. Squash (Cucurbita maxima cv. Warted Hubbard) seeds leaked extensively from the flat sides of the seeds and at the hilum, but only slightly at the margins. Maize (Zea mays cv. Golden Beauty) leaked most extensively across the endosperm-only side (i.e. the side opposite the embryo) of the kernel, and kernels leaked more at the tip-cap end than at the broad end. Energy dispersive X-ray analysis determined that K was present in the testas/pericarps before imbibition in all species studied, and that the peak-to-background ratios of K were lower after the seeds/grains had been exposed to water. Neutron activation analysis verified that K was leaked out of the seeds/grains and absorbed into the agar. Seeds from all species studied showed varying amounts of seed-to-seed variation. These variations can be attributed in part to differences in testa/pericarp structure and condition.


2018 ◽  
Vol 4 (2) ◽  
pp. 23-35 ◽  
Author(s):  
Goudarz Ahmadvand ◽  
Masoume Dehghan Banadaki ◽  
Javad Alimoradi ◽  
Sara Goudarzi ◽  
Sasan Ardalani ◽  
...  

Weed Science ◽  
1979 ◽  
Vol 27 (6) ◽  
pp. 665-674 ◽  
Author(s):  
P. L. Orwick ◽  
M. M. Schreiber

Redroot pigweed (Amaranthus retroflexusL.) and robust foxtail [Setaria viridis(L.) Beauv. var.robusta-albaSchreiber (RWF) orSetaria viridisvar.robusta-purpureaSchreiber (RPF)] were investigated regarding their ability to interfere with soybean [Glycine max(L.) Merr. ‘Amsoy 71′] at different weed densities and soybean row spacing throughout two growing seasons. Final weed densities for each species tended to reach a common value because of intraspecific interference regardless of the initial density. With cultivation, a narrow soybean row spacing (38 cm) resulted in less weed growth than did a wide row spacing (76 cm) but with no cultivation, the trend was reversed. Soybeans provided less interference to foxtail than to pigweed during both growing seasons. Interference from foxtail adversely affected soybean yield components and soybean seed yield more than did pigweed interference. Water-stress conditions in 1976 increased the intensity of weed interference and reduced soybean seed yield more severely than in 1975 when moisture was adequate throughout the growing season.


Weed Science ◽  
1984 ◽  
Vol 32 (1) ◽  
pp. 76-83 ◽  
Author(s):  
Edward E. Schweizer ◽  
Robert L. Zimdahl

The impact of two weed management systems on the weed seed reserves of the soil, on the yearly weed problem, and on corn (Zea maysL.) production was assessed where corn was grown under furrow irrigation for 6 consecutive years. In one system, 2.2 kg/ha of atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine] was applied annually to the same plots as a preemergence treatment. In the other system, a mixture of 1.7 kg/ha of atrazine plus 2.2 kg/ha of alachlor [2-chloro-2′,6′-diethyl-N-(methoxymethyl)acetanilide] was applied preemergence, followed by a postemergence application of 0.6 kg/ha of the alkanolamine salts of 2,4-D [(2,4-dichlorophenoxy)acetic acid]. The response of weeds and corn is presented only where atrazine was applied annually because the results were similar between both weed management systems. Weed seeds from eight annual species were identified, with redroot pigweed (Amaranthus retroflexusL. ♯ AMARE) and common lambsquarters (Chenopodium album♯ CHEAL) comprising 82 and 12%, respectively, of the initial 1.3 billion weed seeds/ha that were present in the upper 25 cm of the soil profile. After the sixth cropping year, the overall decline in the total number of redroot pigweed and common lambsquarters seeds was 99 and 94%, respectively. Very few weeds produced seeds during the first 5 yr, and no weed seeds were produced during the sixth year where atrazine was applied annually. When the use of atrazine was discontinued on one-half of each plot at the beginning of the fourth year, the weed seed reserve in soil began to increase due to an increase in the weed population. After 3 yr of not using atrazine, the weed seed reserve in soil had built up to over 648 million seeds/ha, and was then within 50% of the initial weed seed population. In the fifth and sixth years, grain yields were reduced 39 and 14%, respectively, where atrazine had been discontinued after 3 yr.


Weed Science ◽  
1987 ◽  
Vol 35 (1) ◽  
pp. 27-35 ◽  
Author(s):  
Robin R. Bellinder ◽  
Robert E. Lyons ◽  
Stephen E. Scheckler ◽  
Henry P. Wilson

Formulated and technical grade HOE-39866 [ammonium-(3-amino-3-carboxypropyl) methylphosphinate] at concentrations of 10–1, 10–2, and 10–3M were applied to leaf blade tissues of nonreproductive adult redroot pigweed (Amaranthus retroflexusL. # AMARE) and fall panicum (Panicum dichotomiflorumMichx. # PANDI). Tissues were sampled at regular intervals after treatment and prepared for light microscopic examination. The major response of both species involved rupture and contortion of the interveinal mesophyll cells with concomitant disorganization of the bundle sheath cells. Rapid epidermal collapse occurred in redroot pigweed but not in fall panicum. The absence of adjuvants resulted in nonuniform symptom expression as herbicide droplets accumulated in depressions and along leaf margins. No other adjuvant-specific effect was observed. Herbicide concentration did not alter the final response but the time-to-expression increased as concentration decreased.


Weed Science ◽  
1986 ◽  
Vol 34 (3) ◽  
pp. 440-443 ◽  
Author(s):  
E. Patrick Fuerst ◽  
Michael Barrett ◽  
Donald Penner

Various chemical treatments were evaluated over two growing seasons for control of triazine-resistant common lambsquarters (Chenopodium albumL. # CHEAL) and for control of a triazine-resistant infestation containing both redroot pigweed (Amaranthus retroflexusL. # AMARE) and Powell amaranth (A. powelliiS. Wats. # AMAPO). Atrazine [6-chloro-N-ethyl-N′-(1-methylethyl)-1,3,5-triazine-2,4-diamine], cyanazine {2-[[4-chloro-6-(ethylamino)-1,3,5-triazin-2-yl] amino]-2-methylpropanenitrile}, and metribuzin [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)-one] provided unsatisfactory control of these biotypes. Satisfactory control of common lambsquarters was obtained with preemergence applications of pendimethalin [N-(1-ethylpropyl)-3,4-dimethyl-2,6-dinitrobenzenamine] or dicamba (3,6-dichloro-2-methoxybenzoic acid), or postemergence applications of dicamba, bromoxynil (3,5-dibromo-4-hydroxybenzonitrile), or bentazon [3-(1-methylethyl)-(1H)-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide]. Satisfactory control of pigweed was obtained with preemergence applications of alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)acetamide] or postemergence treatments of dicamba, bromoxynil, or 2,4-D [(2,4-dichlorophenoxy) acetic acid].


Weed Science ◽  
1977 ◽  
Vol 25 (2) ◽  
pp. 135-141 ◽  
Author(s):  
C.G. McWhorter

Field experiments were conducted to study the feasibility of applying glyphosate [N-(phosphonomethyl)glycine] postemergence for the control of johnsongrass [Sorghum halepense(L.) Pers.], redroot pigweed (Amaranthus retroflexusL.), and hemp sesbania [Sesbania exaltata(Raf.) Cory] in soybeans [Glycine max(L.) Merr.]. Herbicide sprays were directed across the row to weeds growing taller than soybeans in June, July, and August. Herbicide not sprayed on weeds was trapped and reused. Glyphosate at 1.12 and 1.68 kg/ha effectively controlled johnsongrass with little soybean injury and with greatly increased soybean yields. The use of 0.1% surfactant frequently increased the toxicity of glyphosate at 1.12 and 1.68 kg/ha to soybeans, but this adverse effect was overcome by the use of 0.1% anti-drift polymer in sprays. Control of redroot pigweed with glyphosate at 1.12 kg/ha was improved by the use of 0.1% surfactant, but surfactant did not increase control with glyphosate at 1.68 kg/ha. Glyphosate at 1.68 kg/ha, with 0.1% surfactant, was required to provide more than 80% control of hemp sesbania. Glyphosate applied at 1.12 kg/ha in the recirculating sprayer provided equal johnsongrass control, increased soybean yields and caused less soybean injury than when glyphosate at 0.56 kg/ha was applied over-the-top in water or in foam.


Sign in / Sign up

Export Citation Format

Share Document