Preemergence Herbicides and Cultivations for Soybeans (Glycine max)

Weed Science ◽  
1981 ◽  
Vol 29 (2) ◽  
pp. 165-168 ◽  
Author(s):  
Maurice R. Gebhardt

Combined effects of herbicides, herbicide rates, and cultivation for weed control in soybeans [Glycine max(L.) Merr. ‘Williams’] were studied using full and one-half rates of either chloramben (3-amino-2,5-dichlorobenzoic acid) or alachlor [2-chloro-2′,6′-diethyl-N-(methoxymethyl)acetanilide] + linuron [3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea] with no, one, and two cultivations. The full rate was 2.2 kg/ha for alachlor and chloramben and 0.70 kg/ha for linuron. Alachlor + linuron was better than chloramben, and the full rate was better than the one-half rate. One or two cultivations were better than no cultivation. Cultivations were more effective when used with alachlor + linuron than when used with chloramben or when used alone. Alachlor + linuron at the full rate with one or two cultivations produced the best soybean yields. A one-half rate of alachlor + linuron with one or two cultivations yielded the same as a full rate of alachlor + linuron alone or with one cultivation, chloramben at one-half rate with two cultivations, and chloramben at a full rate with two cultivations. Cultivations can be effective by increasing weed control and yields when herbicide rate or effectiveness has been reduced. Use of a cultivation in addition to the preemergence herbicides used in this study is necessary for improved weed control and yields.

1998 ◽  
Vol 12 (2) ◽  
pp. 268-274 ◽  
Author(s):  
Robert C. Scott ◽  
David R. Shaw ◽  
Randall L. Ratliff ◽  
Larry J. Newsom

Greenhouse and field experiments were conducted to evaluate early postemergence (POST) tank mixtures of SAN 582 with fluazifop-P, imazethapyr, or sethoxydim. In the greenhouse, SAN 582 synergistically improved barnyardgrass, broadleaf signalgrass, and johnsongrass control from imazethapyr and sethoxydim. Half-rates of imazethapyr and sethoxydim tank-mixed with SAN 582 controlled grass weeds as well as full rates of either herbicide applied alone. Grass weed control with imazethapyr increased up to 40% with the addition of SAN 582. In field experiments, SAN 582 increased grass control with imazethapyr to a lesser degree than observed in the greenhouse. In a multispecies study, grass weed control increased up to 15% when SAN 582 was tank-mixed with a reduced rate of imazethapyr, although the full rate of imazethapyr applied POST with or without SAN 582 controlled grass weeds 80% or less. The combination of SAN 582 with sethoxydim was synergistic for barnyardgrass and johnsongrass control in this experiment. When applied POST in soybean, SAN 582 plus fluazifop-P or sethoxydim controlled barnyardgrass throughout the season better than a single POST application of a graminicide.


Weed Science ◽  
1984 ◽  
Vol 32 (3) ◽  
pp. 293-298 ◽  
Author(s):  
R. N. Stougaard ◽  
George Kapusta ◽  
Gordon Roskamp

Several field studies were conducted during 1981 and 1982 to determine whether early preplant (EPP) applications of residual herbicides would prevent the establishment of vegetation before planting no-till soybeans [Glycine max(L.) Merr. ‘Williams’]. Early preplant applications of either cyanazine {2-[[4-chloro-6-(ethylamino)-s-triazin-2-yl] amino]-2-methylpropionitrile} or cyanazine plus oryzalin (3,5-dinitro-N4,N4-dipropylsulfanilamide) were applied in the fall and 3, 2, and 1 month(s) before planting no-till soybeans. In all studies, the treatments prevented vegetation from becoming established before planting, and season-long weed control was achieved with several different treatments. Early preplant cyanazine plus oryzalin provided greater than 90% control for the entire season where grass densities were low. Where grass densities were high (greater than 90% ground cover), EPP cyanazine plus a preemergence application of metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] plus metribuzin [4-amino-6-tert-butyl-3-(methylthio)-as-triazin-5(4H)-one] or a postemergence application of sethoxydim {2-[1-(ethoxyimino) butyl]-5-[2-(ethylthio)propyl]-3-hydroxy-2-cyclohexen-1-one} controlled 90% of the weeds, which was equal to or better than the standard preemergence treatments used (80 to 98% weed control).


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 627g-628
Author(s):  
Martin L. Kaps ◽  
Marilyn B. Odneal

Preemergent herbicides were applied to vineyards in the southcentral Missouri Ozark region. These were applied at full label rate in the fall or in the spring, at half rate in the fall and again in the spring, and as tank-mixes in the spring. Days of acceptable annual weed control (30% or less cover) beyond the untreated control were determined for these application methods over three years. The fall applications were effective at controlling winter annual weeds and early summer annual weed growth the following season. By mid summer the fall applied preemergents lost residual activity. Splitting the label rate between fall and spring was no better than a full rate spring application at increasing the days of acceptable summer annual weed control. Single preemergent spring application performed as well as tank-mixes.


Weed Science ◽  
1972 ◽  
Vol 20 (6) ◽  
pp. 548-553 ◽  
Author(s):  
J. V. Parochetti ◽  
R. W. Feeny ◽  
S. R. Colby

Greenhouse and field studies were conducted with 3-[p-(p-chlorophenoxy)phenyl]-1,1-dimethylurea (chloroxuron). Tolerant soybean(Glycine max(L.) Merr.) and susceptible tall morningglory(Ipomoea purpurea(L.) Roth.) and ivyleaf morningglory(I. hederacea(L.) Jacq.) were studied with both root and foliar chloroxuron applications. Soybean tolerance to chloroxuron was reduced when treatments occurred in the unifoliate stage; greatest soybean tolerance was noted when soybeans were treated in either the cotyledonary or third trifoliage stage. Tall and ivyleaf morningglory were susceptible to chloroxuron until about 21 days of age (five true leaves), after which resistance increased. Root applications of chloroxuron were more phytotoxic than foliar applications for soybeans and both species of morningglory. In a 3-year study in the field, the following sequential herbicide treatments of either α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine (trifluralin), 4-(methylsulfonyl-2,6-dinitro-N,N-dipropylaniline (nitralin),S-propyl dipropylthiocarbamte (vernolate), or 3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea (linuron) applied preemergence plus chloroxuron postemergence resulted in higher soybean yields than any single herbicide treatment. Weed control was better with the sequential combinations. All sequential combinations with chloroxuron caused soybean injury. Greatest soybean injury occurred when chloroxuron was applied in the first and second trifoliate stage than in the third trifoliate stage. Vernolate alone caused some injury in certain years.


Weed Science ◽  
1990 ◽  
Vol 38 (6) ◽  
pp. 541-545 ◽  
Author(s):  
Lawrence E. Steckel ◽  
Michael S. Defelice ◽  
Barry D. Sims

The interaction of reduced rates of bentazon, chlorimuron, imazaquin, and imazethapyr with cultivation for broadleaf weed control in soybeans was investigated in field experiments conducted at three sites in Missouri in 1987 and 1988. Single reduced-rate herbicide applications provided soybean yields equal to full rates although visual weed control was slightly lower. Sequential applications of all four herbicides at reduced rates provided weed control and soybean yields equal to full-rate applications. The number of velvetleaf plants m−2and seeds plant−1were not influenced by herbicide, herbicide rate, or application timing. Cultivation improved weed control and soybean yield and decreased late-season weed populations and seed production.


1994 ◽  
Vol 8 (4) ◽  
pp. 684-688 ◽  
Author(s):  
David E. Hydrick ◽  
David R. Shaw

Field experiments were established in 1991 and 1992 on silty clay and sandy loam soils to evaluate various split rates of early PPI and PRE (to soybean) selective herbicides with and without paraquat for sicklepod and pitted morningglory control in stale seedbed soybean. Metribuzin at 360 g ai/ha plus 60 g ai/ha chlorimuron tank-mixed with 700 g ai/ha paraquat controlled sicklepod and pitted morningglory 83 and 91%, respectively, 4 wk after planting. Without paraquat, sicklepod and pitted morningglory control was only 65% and 67%, respectively. Imazaquin at 140 g/ha PRE tank-mixed with paraquat controlled sicklepod 78% and pitted morningglory 92%. Without paraquat, control was 38% and 84%, respectively. Early PPI applications of metribuzin plus chlorimuron or imazaquin at the full rate alone or followed by paraquat at planting resulted in poor control. With sequential treatments (PPI followed by PRE) the addition of paraquat at planting did not usually improve control, and either imazaquin or metribuzin plus chlorimuron provided equivalent control when compared with the full rate of either herbicide applied PRE. Season-long weed control was not obtained with any treatment in any experiment, and the crop was not harvestable.


Weed Science ◽  
1970 ◽  
Vol 18 (4) ◽  
pp. 467-469 ◽  
Author(s):  
Roy J. Smith

In three field experiments at the University of Arkansas Rice Branch Experiment Station, Stuttgart,S-ethyl hexahydro-1H-azepine-1-carbothioate [molinate] at 2, 3, 4, and 6 lb/A was applied into the flood water 3, 6, 11, and 17 days after emergence of rice [Oryza sativaL.] and barnyardgrass [Echinochloa crusgalli(L.) Beauv.]. Molinate at 2 or 3 lb/A applied 3, 6, 11, or 17 days after emergence of rice and barnyardgrass, when weeds ranged from the one-leaf to tillering stages, provided acceptable weed control and rice tolerated these treatments satisfactorily. A rate of 3 lb/A frequently controlled barnyardgrass better than 2 lb/A, and usually was as effective as 4 or 6 lb/A. Sometimes, rates of 4 or 6 lb/A, applied 11 or 17 days after rice emergence, injured the crop moderately to severely and reduced grain yields.


Weed Science ◽  
1983 ◽  
Vol 31 (1) ◽  
pp. 93-99 ◽  
Author(s):  
Larry G. Heatherly ◽  
C. Dennis Elmore

Soybeans [Glycine max(L.) Merr.] were planted in an untilled, stale seedbed and conventionally tilled seedbed of Sharkey clay (Vertic Haplaquept) at Stoneville, Mississippi, in 1979 and 1980 to determine the feasibility of the stale -seedbed approach for soybean production in the Mississippi River Delta. Chemical weed control included applications of preplant, preemergence, and postemergence herbicides. Prickly sida (Sida spinosaL.) was the dominant weed in all tillage and weed-control systems. Perennial species were observed at harvest mostly in the stale - seedbed plots. Preemergence herbicides reduced the total weight of weeds per plot. Conventional seedbed preparation caused delays in planting of 3 weeks or more. In the presence of adequate soil moisture, yields of ‘Bedford,’ ‘Tracy’, and ‘Bragg’ cultivars from the stale - seedbed planting and areas that had been treated preemergence were always equal to or greater than yields from the tilled - seedbed plantings and areas that had been treated postemergence. In 1980, the hot, dry conditions of the growing season apparently negated any effect from either earlier planting or preemergence vs. post-emergence weed control.


1993 ◽  
Vol 7 (2) ◽  
pp. 311-316 ◽  
Author(s):  
P. Roy Vidrine ◽  
Daniel B. Reynolds ◽  
James L. Griffin

Field experiments were conducted over a 3-yr period at three locations to evaluate lactofen at rates of 110 to 220 g ai ha−1applied POST in combination with chlorimuron at 9 g ae ha−1for weed control in soybean. At St. Joseph in 1989 and Baton Rouge in 1990, lactofen at 110, 150, and 170 g ha−1in combination with chlorimuron controlled prickly sida (3 to 5 cm) and entireleaf and pitted morningglory (5 to 13 cm) comparable with the full rate of lactofen at 220 g ha−1plus chlorimuron and the standard treatment of acifluorfen at 280 g ae ha−1plus bentazon at 560 g ae ha−1. Entireleaf morningglory and sicklepod control at Alexandria with lactofen at 110 to 170 g ha−1plus chlorimuron was comparable with that from the full rate of lactofen plus chlorimuron and better than with acifluorfen plus bentazon. Weed control was reduced when soil moisture was deficient at treatment time or when prickly sida height was more than 5 cm and entireleaf morningglory, pitted morningglory, and sicklepod more than 15 cm. In related studies at St. Joseph, a reduced rate of lactofen (170 g ha−1) in combination with chlorimuron controlled prickly sida 98%, pitted morningglory 93%, and entireleaf morningglory 90% in 1988, which was comparable with the control from the full rate of lactofen plus chlorimuron and with acifluorfen plus bentazon.


1993 ◽  
Vol 7 (4) ◽  
pp. 816-823 ◽  
Author(s):  
Lawrence R. Oliver ◽  
Tracy E. Klingaman ◽  
Marilyn McClelland ◽  
Robert C. Bozsa

Field experiments were conducted using a stale seedbed production system to determine the effect of herbicide application time on preplant, preplant incorporated (PPI), and at-planting treatments on weed control and soybean yield. Herbicides were applied on the surface preplant (PPL) or PPI at 6 to 7, 4 to 5, and 2 to 3 wk before planting and just prior to planting. The differences in weed control and soybean yield among years were due to rainfall patterns 2 wk after herbicide application and during the growing season. Preplant treatments applied 2 to 5 wk before planting generally controlled common cocklebur and pitted morningglory better than preplant treatments applied 6 to 7 wk before planting due to persistence of herbicide activity or treatments at planting due to a greater chance of obtaining adequate rainfall for herbicide activation, more uniform seedbed at planting, and larger weeds at application. Metribuzin plus chlorimuron was less suited than imazaquin as a preplant treatment when applied more than 2 weeks before planting.


Sign in / Sign up

Export Citation Format

Share Document