Influence of pyrithiobac sodium on purple (Cyperus rotundus) and yellow nutsedge (C. esculentus)

Weed Science ◽  
1998 ◽  
Vol 46 (1) ◽  
pp. 111-115 ◽  
Author(s):  
John W. Wilcut

Greenhouse studies were conducted to determine purple and yellow nutsedge response to selective placement of a 5-cm layer of pyrithiobac sodium-treated soil above, below, or above and below nutsedge tubers. Pyrithiobac sodium at 36 or 72 g ae ha−1applied postemergence as foliar, soil, or foliar and soil treatments also was evaluated. Pyrithiobac sodium applied above, below, or above and below nutsedge tubers reduced yellow and purple nutsedge shoot number, shoot regrowth, and root-tuber dry weight at least 90%. Foliar-only treatment of pyrithiobac sodium was less effective at reducing emerged purple and yellow nutsedge numbers than application to soil only or to foliage and soil. Best reduction in yellow and purple nutsedge growth with pyrithiobac sodium was obtained with soil-incorporated treatments.

Weed Science ◽  
1994 ◽  
Vol 42 (3) ◽  
pp. 398-402 ◽  
Author(s):  
John S. Richburg ◽  
John W. Wilcut ◽  
Glenn R. Wehtje

Greenhouse studies were conducted to determine the response of purple and yellow nutsedge to selective placement of 5 cm of soil treated with AC 263,222 above and/or below nutsedge tubers. AC 263,222 applied early POST (EPOST) or POST at 71 g ai ha-1as a foliar, soil, or foliar + soil application also was evaluated. AC 263,222 applied below nutsedge tubers did not reduce purple or yellow nutsedge shoot number, shoot dry weight, shoot regrowth dry weight, or root-tuber dry weight. However, when it was applied above purple nutsedge tubers, shoot dry weight was reduced; and when it was applied above yellow nutsedge tubers, shoot dry weight and root dry weight were reduced. AC 263,222 applied 5 cm above + 5 cm below purple nutsedge tubers reduced shoot number, shoot dry weight, shoot regrowth dry weight, and root dry weight to 9, 4, 10, and 16% of the control, respectively, in purple nutsedge and to 23, 16, 9, and 15% of the control, respectively, in yellow nutsedge. AC 263,222 applied EPOST or POST reduced shoot dry weight, shoot regrowth dry weight, and root dry weight of purple nutsedge to less than or equal to 11, 7, and 27% of the control, respectively, and to less than or equal to 10, 16, and 29% of the control, respectively, for yellow nutsedge with no differences between application methods. The foliar and soil activity of AC 263,222 for purple and yellow nutsedge control provides an advantage over currently registered peanut herbicides.


1993 ◽  
Vol 7 (4) ◽  
pp. 900-905 ◽  
Author(s):  
John S. Richburg ◽  
John W. Wilcut ◽  
Glenn R. Wehtje

Greenhouse studies were conducted to determine the response of purple and yellow nutsedges to selective soil placement of 5 cm of soil treated with imazethapyr above and/or below the nutsedge tubers. Early postemergence (EPOST) or postemergence (POST) imazethapyr treatments at 71 g ai/ha as a foliar, soil, or foliar + soil application was also evaluated. Imazethapyr placement above or below the nutsedge tuber generally increased shoot number, shoot dry weight (SW), shoot regrowth dry weight (SRW), and root tuber dry weight (RTW) production in both species, 28 and 42 days after treatment (DAT) compared with the control. However, the 5-cm above + 5-cm below tuber treatment at 14, 28, and 42 DAT reduced purple nutsedge shoot number, SW, SRW, and RTW to 19, 7, 14, and 26% of the control, respectively. Yellow nutsedge shoot number was 103% of the control with the 5-cm above + 5-cm below tuber treatment 42 DAT. The 5-cm above + 5-cm below tuber treatment reduced yellow nutsedge SW, SRW, and RTW to 43, 44, and 23% of the control, respectively, 28 and 42 DAT. EPOST and POST foliar + soil and soil-only applications reduced SW 28 d after treatment (DAT) to 13% or less of the control for both species. SRWs of both species were ≤ 53% of the control 42 DAT for the soil-only application. The foliar-only treatment was the least effective in SW, SRW, and RTW reductions.


1995 ◽  
Vol 9 (1) ◽  
pp. 148-152 ◽  
Author(s):  
William K. Vencill ◽  
John S. Richburg ◽  
John W. Wilcut ◽  
Larry R. Hawf

Greenhouse studies were conducted to determine the response of purple and yellow nutsedge to selective soil placement of 5 cm of soil treated with MON-12037 above and/or below the nutsedge tubers. MON-12037 at 53 g/ai ha applied as a foliar, soil, or foliar + soil application also were evaluated. MON-12037 placement above, below, or above + below the nutsedge tuber decreased shoot number, shoot dry weight, shoot regrowth dry weight, and root-tuber dry weight production in both species, 30 and 60 d after treatment. MON-12037 applied as a foliar, soil, and foliar + soil treatment was effective in reducing purple nutsedge shoot regrowth dry weight to less than 5% of the non-treated control. Yellow nutsedge shoot regrowth dry weight from the foliar + soil and soil-only applications was less than 1% of the non-treated control.


Weed Science ◽  
1997 ◽  
Vol 45 (3) ◽  
pp. 382-387 ◽  
Author(s):  
Glenn R. Wehtje ◽  
Robert H. Walker ◽  
Timothy L. Grey ◽  
H. Gary Hancock

A series of greenhouse studies examined the effectiveness of PRE- and POST-applied sulfentrazone in controlling purple and yellow nutsedge as influenced by selective tissue exposure. In addition,14C-sulfentrazone was utilized to contrast absorption and translocation resulting from these exposures. Consistent control with preemergence applications to germinating tubers was obtained with a combined root and shoot zone exposure. Yellow nutsedge was more susceptible than purple nutsedge. Performance of the separate root and shoot zone exposure was soil pH- and nutsedge-species dependent. POST-foliar applications to established nutsedge were more effective when sulfentrazone was allowed to contact the soil surface.14C-sulfentrazone was readily absorbed by the roots and translocated to the foliage of both species in hydroponic culture.


1995 ◽  
Vol 9 (2) ◽  
pp. 277-280 ◽  
Author(s):  
J. K. Peterson ◽  
H. F. Harrison

The allelopathic influence of sweet potato cultivar ‘Regal’ on purple nutsedge was compared to the influence on yellow nutsedge under controlled conditions. Purple nutsedge shoot dry weight, total shoot length and tuber numbers were significantly lower than the controls (47, 36, and 19% inhibition, respectively). The influence on the same parameters for yellow nutsedge (35, 21, and 43% inhibition, respectively) were not significantly different from purple nutsedge. Sweet potato shoot dry weight was inhibited by purple and yellow nutsedge by 42% and 45%, respectively. The major allelopathic substance from ‘Regal’ root periderm tissue was isolated and tested in vitro on the two sedges. The I50's for shoot growth, root number, and root length were 118, 62, and 44 μg/ml, respectively, for yellow nutsedge. The I50's for root number and root length were 91 and 85 μg/ml, respectively, for purple nutsedge and the I50for shoot growth could not be calculated.


2012 ◽  
Vol 26 (2) ◽  
pp. 294-299 ◽  
Author(s):  
Travis W. Gannon ◽  
Fred H. Yelverton ◽  
Lane P. Tredway

Greenhouse experiments were conducted to evaluate the effect of selective herbicide placement on sedge shoot number, shoot weight, and root weight. Sulfentrazone, sulfosulfuron, and trifloxysulfuron were applied to soil only, foliage only, or soil plus foliage. Sulfentrazone provided greater yellow nutsedge and false green kyllinga growth reduction compared to purple nutsedge. Sulfosulfuron provided greater purple nutsedge and false green kyllinga growth reduction compared to yellow nutsedge; these species responded similarly to trifloxysulfuron. Soil and soil plus foliar applications provided the highest level of growth suppression, indicating herbicide–soil contact is required for optimum sedge control with these three herbicides. Future research should evaluate techniques that optimize herbicide–soil contact to improve herbicide efficacy.


Weed Science ◽  
1989 ◽  
Vol 37 (2) ◽  
pp. 147-151 ◽  
Author(s):  
Krishna N. Reddy ◽  
Leo E. Bendixen

The activity of soil-applied chlorimuron in yellow and purple nutsedge was studied in greenhouse and laboratory experiments. Soil-applied chlorimuron decreased tuber sprouting by 80% in yellow nutsedge and by 30% in purple nutsedge at 60 g ai/ha. Chlorimuron decreased shoot emergence by 53 to 83% and shoot growth by 85 to 99% in both species at rates as low as 10 g/ha. Previous exposure of tubers to chlorimuron-treated soil reduced tuber resprouting by 20 to 25% in herbicide-free soil at 60 g/ha in both species. There was no rate response in shoot emergence from tubers previously exposed to chlorimuron, but shoot dry weight decreased by 60 to 81% in both species at 60 g/ha. At 12 h after application, 47% of the total14C applied to the shoot in yellow nutsedge and 32% of that applied in purple nutsedge were absorbed. However, less than 1% of the total14C applied was translocated out of the shoot and into the roots and tuber in either species. In both species, 1.3% of the14C applied to the roots and tuber was absorbed and 0.1% was translocated out of the roots and tuber into the shoot at 12 h after application. The pattern of root- and tuber-absorbed14C distribution indicated that the14C absorbed by the tuber remained in the tuber and that absorbed by the roots was translocated to the shoots.


Weed Science ◽  
2016 ◽  
Vol 64 (3) ◽  
pp. 389-398
Author(s):  
Parsa Tehranchian ◽  
Jason K. Norsworthy ◽  
Matheus Palhano ◽  
Nicholas E. Korres ◽  
Scott McElroy ◽  
...  

A yellow nutsedge biotype (Res) from an Arkansas rice field has evolved resistance to acetolactate synthase (ALS)-inhibiting herbicides. TheResbiotype previously exhibited cross-resistance to ALS inhibitors from four chemical families (imidazolinone, pyrimidinyl benzoate, sulfonylurea, and triazolopyrimidine). Experiments were conducted to evaluate alternative herbicides (i.e., glyphosate, bentazon, propanil, quinclorac, and 2,4-D) currently labeled in Arkansas rice–soybean production systems. Based on the percentage of aboveground dry weight reduction, control of the yellow nutsedge biotypes with the labeled rate of bentazon, propanil, quinclorac, and 2,4-D was < 44%. Glyphosate (867 g ae ha−1) resulted in 68 and > 94% control of theResand susceptible yellow nutsedge biotypes, respectively, at 28 d after treatment. Dose-response studies were conducted to estimate the efficacy of glyphosate on theResbiotype, three susceptible yellow nutsedge biotypes, and purple nutsedge. Based on the dry weights, theResbiotype was ≥ 5- and ≥ 1.3-fold less responsive to glyphosate compared to the susceptible biotypes and purple nutsedge, respectively. Differences in absorption and translocation of radiolabeled glyphosate were observed among the yellow nutsedge biotypes and purple nutsedge. The susceptible biotype had less14C-glyphosate radioactivity in the tissues above the treated leaf and greater radioactivity in tissues below the treated leaf compared to theResbiotype and purple nutsedge. Reduced translocation of glyphosate in tissues below the treated leaf of theResbiotype could be a reason for the lower glyphosate efficacy in theResbiotype. No amino acid substitution that would correspond to glyphosate resistance was found in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene of theResbiotype. However, an amino acid (serine) addition was detected in the EPSPS gene of theResbiotype; albeit, it is not believed that this addition contributes to lower efficacy of glyphosate in this biotype.


1987 ◽  
Vol 1 (1) ◽  
pp. 2-9 ◽  
Author(s):  
Gene D. Wills

Both purple nutsedge (Cyperus rotundusL. # CYPRO) and yellow nutsedge (C. esculentusL. # CYPES) are problem weeds in crops in many parts of the world. Yellow nutsedge is found in all U.S. states. Purple nutsedge is confined to the southern region of the United States, ranging from North Carolina across southern Arkansas and into southern California.


Weed Science ◽  
1968 ◽  
Vol 16 (3) ◽  
pp. 339-340 ◽  
Author(s):  
W. S. Hardcastle ◽  
R. E. Wilkinson

Purple nutsedge (Cyperus rotundus L.) and yellow nutsedge (Cyperus esculentus L.) tubers were stored at 5 C in soil treated at 0, 2, 3, 4, 6, 8, or 10 lb/A 2,6-dichlorobenzontrile (dichlobenil) for 2, 4, 6, 8, 10, or 12 weeks. Respiration of dormant tubers differed with species, unaffected by period of storage or dichlobenil concentration. Sprouting of untreated tubers decreased from 90% after 2 weeks storage to 43% after 12 weeks. Yellow nutsedge sprout production was uniform in time; purple nutsedge sprouting progressed to an 8-week high. Increased concentrations of dichlobenil progressively inhibited sprouting.


Sign in / Sign up

Export Citation Format

Share Document