scholarly journals The galactic distance scale

1979 ◽  
Vol 84 ◽  
pp. 195-200 ◽  
Author(s):  
J. A. Graham

Recent work on the distance scale of the Galaxy has largely been in the direction of refining previously established methods. The RR Lyrae variable stars appear to be better distance indicators than was once thought and they have been used in determining Ro, the distance to the Galactic center. Ro is probably somewhat less than 10 kpc but greater than 7 kpc. Most methods point to a value near 8.5 kpc.

2015 ◽  
Vol 11 (S317) ◽  
pp. 116-119
Author(s):  
Pawel Pietrukowicz ◽  

AbstractRR Lyrae stars being distance indicators and tracers of old population serve as excellent probes of the structure, formation, and evolution of our Galaxy. Thousands of them are being discovered in ongoing wide-field surveys. The OGLE project conducts the Galaxy Variability Survey with the aim to detect and analyze variable stars, in particular of RRab type, toward the Galactic bulge and disk, covering a total area of 3000 deg2. Observations in these directions also allow detecting background halo variables and unique studies of their properties and distribution at distances from the Galactic Center to even 40 kpc. In this contribution, we present the first results on the spatial distribution of the observed RRab stars, their metallicity distribution, the presence of multiple populations, and relations with the old bulge. We also show the most recent results from the analysis of RR Lyrae stars of the Sgr dwarf spheroidal galaxy, including its center, the globular cluster M54.


2019 ◽  
Vol 625 ◽  
pp. A151 ◽  
Author(s):  
V. F. Braga ◽  
R. Contreras Ramos ◽  
D. Minniti ◽  
C. E. Ferreira Lopes ◽  
M. Catelan ◽  
...  

Context. The Galactic center (GC) is the densest region of the Milky Way. Variability surveys towards the GC potentially provide the largest number of variable stars per square degree within the Galaxy. However, high stellar density is also a drawback due to blending. Moreover, the GC is affected by extreme reddening, therefore near infrared observations are needed. Aims. We plan to detect new variable stars towards the GC, focusing on type II Cepheids (T2Cs) which have the advantage of being brighter than RR Lyrae stars. Methods. We perform parallel Lomb-Scargle and Generalized Lomb-Scargle periodogram analysis of the Ks-band time series of the VISTA variables in the Vía Láctea survey, to detect periodicities. We employ statistical parameters to clean our sample. We take account of periods, light amplitudes, distances, and proper motions to provide a classification of the candidate variables. Results. We detected 1019 periodic variable stars, of which 164 are T2Cs, 210 are Miras and 3 are classical Cepheids. We also found the first anomalous Cepheid in this region. We compare their photometric properties with overlapping catalogs and discuss their properties on the color-magnitude and Bailey diagrams. Conclusions. We present the most extensive catalog of T2Cs in the GC region to date. Offsets in E(J − Ks) and in the reddening law cause very large (∼1–2 kpc) uncertainties on distances in this region. We provide a catalog which will be the starting point for future spectroscopic surveys in the innermost regions of the Galaxy.


2017 ◽  
Vol 12 (S330) ◽  
pp. 287-296
Author(s):  
Martin A. T. Groenewegen

AbstractClassical variables like RR Lyrae, classical and Type-II Cepheids and Mira variables all follow period-luminosity relations that make them interesting as distance indicators. Especially the RR Lyrae and δ Cepheids are crucial in establishing the distance scale in the Universe, and all classes of variables can be used as tracers of galactic structure. I will present an overview of recent period-luminosity relations and review the work that has been done using the Gaia DR1 data so far, and discuss possibilities for the future.


1966 ◽  
Vol 25 ◽  
pp. 93-97
Author(s):  
Richard Woolley

It is now possible to determine proper motions of high-velocity objects in such a way as to obtain with some accuracy the velocity vector relevant to the Sun. If a potential field of the Galaxy is assumed, one can compute an actual orbit. A determination of the velocity of the globular clusterωCentauri has recently been completed at Greenwich, and it is found that the orbit is strongly retrograde in the Galaxy. Similar calculations may be made, though with less certainty, in the case of RR Lyrae variable stars.


2012 ◽  
Vol 8 (S289) ◽  
pp. 101-108 ◽  
Author(s):  
Carla Cacciari

AbstractRR Lyrae variables are the primary standard candles for old stellar populations, and the traditional first step in the definition of the distance scale. Their properties are known on the basis of well-established physical concepts and their calibration is based on several empirical methods. Both aspects are critically reviewed, and their application as distance indicators within the Galaxy and the Local Group are discussed, also in view of the observing facilities that will be available in the near future.


1993 ◽  
Vol 139 ◽  
pp. 337-337
Author(s):  
Martha L. Hazen

A search for variable stars in the globular cluster NGC 6544 has revealed only one possible short period variable within the tidal radius of the cluster. A search in NGC 6642 yielded 16 new RR Lyrae stars within the tidal radius and 5 new field RRs. The previously discovered (Hoffleit 1972) V1 is a slow variable, and V2 is an RR Lyrae star. Photometry of the variables within the tidal radius gives a mean B for the horizontal branch of < B > = 17.0 mag. With E(B – V) = 0.37 mag and (B – V) = 0.35 mag for RR Lyraes, a value for V(HB) = 16.3 mag is derived. This is about one mag fainter than previous estimates (Webbink 1985), and places NGC 6642 at a distance of approximately 7.9 kpc.


1984 ◽  
Vol 108 ◽  
pp. 223-224
Author(s):  
Horace A. Smith ◽  
Leo Connolly

The Small Magellanic Cloud is known to contain types of short period Cepheid variable stars not yet discovered in either the Large Magellanic Cloud or, with the exception of a single star, in the Galaxy. These variables can be divided into two categories: anomalous Cepheids and Wesselink-Shuttleworth (WS) stars. The former, which have also been found in dwarf spheroidal systems and in the globular cluster NGC 5466, have periods of 0.4–3 days, but average 0.7–1.0 mag. brighter than RR Lyrae and BL Her stars of equal period. The stars we call WS stars have periods less than about 1.1 day and, at MV = −1 to −2, are brighter than anomalous Cepheids of equal period.


1977 ◽  
Vol 45 ◽  
pp. 293-296 ◽  
Author(s):  
J. Palouš

The basic model of our Galaxy, like the Schmidt (1965) model, obeys the density law ρ(R) for the Galaxy based on divers evidence, less or better known from observation. The interpretation of the interstellar hydrogen radio profiles yields the rotation curve and the run of the force component in the radial direction. The Oort constants A, B known from radial velocities and proper motions of nearby stars, the distance from the Sun to the galactic center Roestablished from the distances of RR Lyrae stars, the local density and density gradients in the vicinity of the Sun, known from the star counts, are involved in this basic model of the Galaxy. The r.m.s. velocity component in the z direction yields the approximate mass distribution in this direction. The model surface density is computed by integrating the density along the z direction in the model. The local surface density in the Schmidt model is 114 solar masses per pc2; it depends rather strongly on the assumed density variation in the outer part of the Galaxy.


1979 ◽  
Vol 84 ◽  
pp. 201-202
Author(s):  
B. Blanco ◽  
V. M. Blanco

In his pioneer study of the RR Lyrae variable stars near NGC 6522, in the relatively unobscured window close to the galactic center (1 = 0.9, b = −3.9), Baade (1963) was limited by the high zenith distance of the galactic center as seen from Palomar, and suggested that southern hemisphere observations would be of value. Subsequent studies of the region have been based on the variables found in Baade's original search. Southern hemisphere plates were taken by Hartwick et al. (1972), and their re-analysis of a sample of Baade's variables showed many periods to be in error. They did not, however, search the plates for new variables. Plaut (1973) re-analyzed all the variables but no search for new variables was done.


2019 ◽  
Vol 14 (S351) ◽  
pp. 478-481
Author(s):  
M. I. Moretti ◽  
I. Musella ◽  
M. Marconi ◽  
V. Ripepi ◽  
R. Molinaro

AbstractIn the context of the STRucture and Evolution of the GAlaxy survey, we describe the preliminary results obtained for the fields around the globular cluster Pal 3 (about 2.75 square degrees), by exploiting the obtained g, r, i time series photometry. The final aim is to use variable stars as tools to verify and study the presence of streams around Pal 3. We found 20 candidate variable stars of which 7 RR Lyrae stars possibly belonging to Pal 3, also at large distance from the center. The distribution of the candidate RR Lyrae seems to confirm a preferential distribution in the north-east direction, confirming previous results in literature.


Sign in / Sign up

Export Citation Format

Share Document