scholarly journals Digital Videomagnetograms in Real Time

1971 ◽  
Vol 43 ◽  
pp. 44-50 ◽  
Author(s):  
Thomas J. Janssens ◽  
Neal K. Baker

The Aerospace – NASA Videomagnetograph began operation one month ago, two years after components were ordered and construction began. The design grew out of a desire to obtain magnetic fields in real time using an optical filter. The aim was to study and analyze magnetic configurations and changes, quantitatively if possible, with high spatial and temporal resolution and as much sensitivity as possible. This instrument is restricted to the line-of-sight component of the magnetic field and is primarily intended for high resolution studies of selected regions of the sun. The rationale behind our approach is shown in the next section and the design details in the following.

2000 ◽  
Vol 179 ◽  
pp. 263-264
Author(s):  
K. Sundara Raman ◽  
K. B. Ramesh ◽  
R. Selvendran ◽  
P. S. M. Aleem ◽  
K. M. Hiremath

Extended AbstractWe have examined the morphological properties of a sigmoid associated with an SXR (soft X-ray) flare. The sigmoid is cospatial with the EUV (extreme ultra violet) images and in the optical part lies along an S-shaped Hαfilament. The photoheliogram shows flux emergence within an existingδtype sunspot which has caused the rotation of the umbrae giving rise to the sigmoidal brightening.It is now widely accepted that flares derive their energy from the magnetic fields of the active regions and coronal levels are considered to be the flare sites. But still a satisfactory understanding of the flare processes has not been achieved because of the difficulties encountered to predict and estimate the probability of flare eruptions. The convection flows and vortices below the photosphere transport and concentrate magnetic field, which subsequently appear as active regions in the photosphere (Rust & Kumar 1994 and the references therein). Successive emergence of magnetic flux, twist the field, creating flare productive magnetic shear and has been studied by many authors (Sundara Ramanet al.1998 and the references therein). Hence, it is considered that the flare is powered by the energy stored in the twisted magnetic flux tubes (Kurokawa 1996 and the references therein). Rust & Kumar (1996) named the S-shaped bright coronal loops that appear in soft X-rays as ‘Sigmoids’ and concluded that this S-shaped distortion is due to the twist developed in the magnetic field lines. These transient sigmoidal features tell a great deal about unstable coronal magnetic fields, as these regions are more likely to be eruptive (Canfieldet al.1999). As the magnetic fields of the active regions are deep rooted in the Sun, the twist developed in the subphotospheric flux tube penetrates the photosphere and extends in to the corona. Thus, it is essentially favourable for the subphotospheric twist to unwind the twist and transmit it through the photosphere to the corona. Therefore, it becomes essential to make complete observational descriptions of a flare from the magnetic field changes that are taking place in different atmospheric levels of the Sun, to pin down the energy storage and conversion process that trigger the flare phenomena.


1993 ◽  
Vol 139 ◽  
pp. 132-132
Author(s):  
G. Mathys

Magnetic field appears to play a major role in the pulsations of rapidly oscillating Ap (roAp) stars. Understanding of the behaviour of these objects thus requires knowledge of their magnetic field. Such knowledge is in particular essential to interpret the modulation of the amplitude of the photometric variations (with a frequency very close to the rotation frequency of the star) and to understand the driving mechanism of the pulsation. Therefore, a systematic programme of study of the magnetic field of roAp stars has been started, of which preliminary (and still very partial) results are presented here.Magnetic fields of Ap stars can be diagnosed from the Zeeman effect that they induced in spectral lines either from the observation of line-splitting in high-resolution unpolarized spectra (which only occurs in favourable circumstances) or from the observation of circular polarization of the lines in medium- to high-resolution spectra.


2013 ◽  
Vol 9 (S302) ◽  
pp. 220-221
Author(s):  
Adriana Válio ◽  
Eduardo Spagiari

AbstractSunspots are important signatures of the global solar magnetic field cycle. It is believed that other stars also present these same phenomena. However, today it is not possible to observe directly star spots due to their very small sizes. The method applied here studies star spots by detecting small variations in the stellar light curve during a planetary transit. When the planet passes in front of its host star, there is a chance of it occulting, at least partially, a spot. This allows the determination of the spots physical characteristics, such as size, temperature, and location on the stellar surface. In the case of the Sun, there exists a relation between the magnetic field and the spot temperature. We estimate the magnetic field component along the line-of-sight and the intensity of sunspots using data from the MDI instrument on board of the SOHO satellite. Assuming that the same relation applies to other stars, we estimate spots magnetic fields of CoRoT-2 and Kepler-17 stars.


Author(s):  
Robert Cameron

The solar dynamo is the action of flows inside the Sun to maintain its magnetic field against Ohmic decay. On small scales the magnetic field is seen at the solar surface as a ubiquitous “salt-and-pepper” disorganized field that may be generated directly by the turbulent convection. On large scales, the magnetic field is remarkably organized, with an 11-year activity cycle. During each cycle the field emerging in each hemisphere has a specific East–West alignment (known as Hale’s law) that alternates from cycle to cycle, and a statistical tendency for a North-South alignment (Joy’s law). The polar fields reverse sign during the period of maximum activity of each cycle. The relevant flows for the large-scale dynamo are those of convection, the bulk rotation of the Sun, and motions driven by magnetic fields, as well as flows produced by the interaction of these. Particularly important are the Sun’s large-scale differential rotation (for example, the equator rotates faster than the poles), and small-scale helical motions resulting from the Coriolis force acting on convective motions or on the motions associated with buoyantly rising magnetic flux. These two types of motions result in a magnetic cycle. In one phase of the cycle, differential rotation winds up a poloidal magnetic field to produce a toroidal field. Subsequently, helical motions are thought to bend the toroidal field to create new poloidal magnetic flux that reverses and replaces the poloidal field that was present at the start of the cycle. It is now clear that both small- and large-scale dynamo action are in principle possible, and the challenge is to understand which combination of flows and driving mechanisms are responsible for the time-dependent magnetic fields seen on the Sun.


1989 ◽  
Vol 104 (1) ◽  
pp. 271-288
Author(s):  
E. N. Parker

AbstractThis presentation reviews selected ideas on the origin of the magnetic field of the Sun, the dynamical behavior of the azimuthal field in the convective zone, the fibril state of the field at the photosphere, the formation of sunspots, prominences, the spontaneous formation of current sheets in the bipolar field above the surface of the Sun, coronal heating, and flares.


1971 ◽  
Vol 43 ◽  
pp. 76-83 ◽  
Author(s):  
R. C. Smithson ◽  
R. B. Leighton

For many years solar magnetic fields have been measured by a variety of techniques, all of which exploit the Zeeman splitting of lines in the solar spectrum. One of these techniques (Leighton, 1959) involves a photographic subtraction of two monochromatic images to produce a picture of the Sun in which the line-of-sight component of the solar magnetic field appears as various shades of gray. In a magnetogram made by this method, zero field strength appears as neutral gray, while magnetic fields of one polarity or the other appear as lighter or darker areas, respectively. Figure 1 shows such a magnetogram.


2019 ◽  
Vol 15 (S354) ◽  
pp. 454-457
Author(s):  
K. Sowmya ◽  
A. Lagg ◽  
S. K. Solanki ◽  
J. S. Castellanos Durán

AbstractAn active region filament in the upper chromosphere is studied using spectropolarimetric data in He i 10830 Å from the GREGOR telescope. A Milne-Eddingon based inversion of the Unno-Rachkovsky equations is used to retrieve the velocity and the magnetic field vector of the region. The plasma velocity reaches supersonic values closer to the feet of the filament barbs and coexist with a slow velocity component. Such supersonic velocities result from the acceleration of the plasma as it drains from the filament spine through the barbs. The line-of-sight magnetic fields have strengths below 200 G in the filament spine and in the filament barbs where fast downflows are located, their strengths range between 100 - 700 G.


1996 ◽  
Vol 176 ◽  
pp. 1-16
Author(s):  
Carolus J. Schrijver

Looking at the Sun forges the framework within which we try to interpret stellar observations. The stellar counterparts of spots, plages, flux tubes, chromospheres, coronae, etc., are readily invoked when attempting to interpret stellar data. This review discusses a selection of solar phenomena that are crucial to understand stellar atmospheric activity. Topics include the interaction of magnetic fields and flows, the relationships between fluxes from different temperature regimes in stellar atmospheres, the photospheric flux budget and its impact on the measurement of the dynamo strength, and the measurement of stellar differential rotation.


1991 ◽  
Vol 148 ◽  
pp. 101-102
Author(s):  
M.E. Costa ◽  
P. M. McCulloch ◽  
P. A. Hamilton

We have measured a value of 4±5m--2rad for the rotation measure of the radio pulsar PSR0529-66 in the LMC and, after allowing for the dispersion and rotation measures of our Galaxy on the pulsar's line of sight, we deduce that the magnetic field strength in the LMC is in the range 0 to 5μGauss oriented away from the Sun.


2013 ◽  
Vol 9 (S302) ◽  
pp. 290-299
Author(s):  
Oleg Kochukhov

AbstractStars with radiative envelopes, specifically the upper main sequence chemically peculiar (Ap) stars, were among the first objects outside our solar system for which surface magnetic fields have been detected. Currently magnetic Ap stars remains the only class of stars for which high-resolution measurements of both linear and circular polarization in individual spectral lines are feasible. Consequently, these stars provide unique opportunities to study the physics of polarized radiative transfer in stellar atmospheres, to analyze in detail stellar magnetic field topologies and their relation to starspots, and to test different methodologies of stellar magnetic field mapping. Here I present an overview of different approaches to modeling the surface fields in magnetic A- and B-type stars. In particular, I summarize the ongoing efforts to interpret high-resolution full Stokes vector spectra of these stars using magnetic Doppler imaging. These studies reveal an unexpected complexity of the magnetic field geometries in some Ap stars.


Sign in / Sign up

Export Citation Format

Share Document