scholarly journals X-rays from Radio Pulsars: The Portable Supernova Remnants

1983 ◽  
Vol 101 ◽  
pp. 471-484 ◽  
Author(s):  
David J. Helfand

Neutron stars are the longest-lived remnants of supernova explosions. As a reservoir of thermal energy remaining from the explosion and generated by frictional coupling between core and crust, as a storehouse of magnetic and rotational kinetic energy which allows the star to act as a high energy particle accelerator, and as the source of a deep gravitational potential which can generate heat from infalling matter, neutron stars remain capable of producing high energy radiation for a Hubble time. We review here the results of an extensive survey of supernova remnants and radio pulsars with the imaging instruments on board the Einstein Observatory and discuss the implications of these results for pulsar physics and for the origin and evolution of galactic neutron stars.

2021 ◽  
Vol 366 (6) ◽  
Author(s):  
Hidetoshi Sano ◽  
Yasuo Fukui

AbstractWe review recent progress in elucidating the relationship between high-energy radiation and the interstellar medium (ISM) in young supernova remnants (SNRs) with ages of ∼2000 yr, focusing in particular on RX J1713.7−3946 and RCW 86. Both SNRs emit strong nonthermal X-rays and TeV $\gamma $ γ -rays, and they contain clumpy distributions of interstellar gas that includes both atomic and molecular hydrogen. We find that shock–cloud interactions provide a viable explanation for the spatial correlation between the X-rays and ISM. In these interactions, the supernova shocks hit the typically pc-scale dense cores, generating a highly turbulent velocity field that amplifies the magnetic field up to 0.1–1 mG. This amplification leads to enhanced nonthermal synchrotron emission around the clumps, whereas the cosmic-ray electrons do not penetrate the clumps. Accordingly, the nonthermal X-rays exhibit a spatial distribution similar to that of the ISM on the pc scale, while they are anticorrelated at sub-pc scales. These results predict that hadronic $\gamma $ γ -rays can be emitted from the dense cores, resulting in a spatial correspondence between the $\gamma $ γ -rays and the ISM. The current pc-scale resolution of $\gamma $ γ -ray observations is too low to resolve this correspondence. Future $\gamma $ γ -ray observations with the Cherenkov Telescope Array will be able to resolve the sub-pc-scale $\gamma $ γ -ray distribution and provide clues to the origin of these cosmic $\gamma $ γ -rays.


1991 ◽  
Vol 143 ◽  
pp. 397-408
Author(s):  
Thierry Montmerle

Giant HII regions contain highly energetic objects: luminous, massive stars (including Wolf-Rayet stars) generating powerful winds, as well as, often, supernova remnants. These objects interact with the surrounding gas by creating shock waves. Part of the energy input is radiated away in the form of X-rays; also, protons and electrons may be accelerated in situ and generate γ-rays by collisions with the ionized gas. In addition, the stars themselves (including the accompanying low-mass PMS stars) are sources of X-rays, and W-R stars may emit continuum y-rays and are associated with nuclear γ-ray lines seen in the interstellar medium. Therefore, both through the stars they contain and through interactions within the gas, giant HII regions are, in addition to their more traditional properties and over nearly 7 decades in energy, important sources of high-energy radiation.


2020 ◽  
Vol 644 ◽  
pp. A112
Author(s):  
◽  
H. Abdalla ◽  
R. Adam ◽  
F. Aharonian ◽  
F. Ait Benkhali ◽  
...  

The unidentified very-high-energy (VHE; E > 0.1 TeV) γ-ray source, HESS J1826−130, was discovered with the High Energy Stereoscopic System (HESS) in the Galactic plane. The analysis of 215 h of HESS data has revealed a steady γ-ray flux from HESS J1826−130, which appears extended with a half-width of 0.21° ± 0.02stat° ± 0.05sys°. The source spectrum is best fit with either a power-law function with a spectral index Γ = 1.78 ± 0.10stat ± 0.20sys and an exponential cut-off at 15.2−3.2+5.5 TeV, or a broken power-law with Γ1 = 1.96 ± 0.06stat ± 0.20sys, Γ2 = 3.59 ± 0.69stat ± 0.20sys for energies below and above Ebr = 11.2 ± 2.7 TeV, respectively. The VHE flux from HESS J1826−130 is contaminated by the extended emission of the bright, nearby pulsar wind nebula, HESS J1825−137, particularly at the low end of the energy spectrum. Leptonic scenarios for the origin of HESS J1826−130 VHE emission related to PSR J1826−1256 are confronted by our spectral and morphological analysis. In a hadronic framework, taking into account the properties of dense gas regions surrounding HESS J1826−130, the source spectrum would imply an astrophysical object capable of accelerating the parent particle population up to ≳200 TeV. Our results are also discussed in a multiwavelength context, accounting for both the presence of nearby supernova remnants, molecular clouds, and counterparts detected in radio, X-rays, and TeV energies.


1968 ◽  
Vol 46 (10) ◽  
pp. S472-S475 ◽  
Author(s):  
D. B. Melrose ◽  
A. G. W. Cameron

Recent investigations of the properties of neutron stars and of supernova explosions indicate that neutron stars should frequently be formed as supernova remnants. It now appears unlikely that any form of internal energy storage can play an important role in the production of X rays or cosmic rays. If mass infall onto a neutron star occurs at the upper limiting value allowed by radiation stresses, instabilities are likely to make the resulting mass infall, X-ray, gamma-ray, and cosmic-ray production very intermittent. It is shown that such a model may be able to account for many features of the Crab nebula: the energy input in electrons and ions, the character of the fast-moving light ripples or wisps, and the strong point source of ~50 MHz radiation.


2000 ◽  
Vol 177 ◽  
pp. 699-702 ◽  
Author(s):  
E. V. Gotthelf ◽  
G. Vasisht

AbstractWe propose a simple explanation for the apparent dearth of radio pulsars associated with young supernova remnants (SNRs). Recent X-ray observations of young remnants have revealed slowly rotating (P∼ 10s) central pulsars with pulsed emission above 2 keV, lacking in detectable radio emission. Some of these objects apparently have enormous magnetic fields, evolving in a manner distinct from the Crab pulsar. We argue that these X-ray pulsars can account for a substantial fraction of the long sought after neutron stars in SNRs and that Crab-like pulsars are perhaps the rarer, but more highly visible example of these stellar embers. Magnetic field decay likely accounts for their high X-ray luminosity, which cannot be explained as rotational energy loss, as for the Crab-like pulsars. We suggest that the natal magnetic field strength of these objects control their subsequent evolution. There are currently almost a dozen slow X-ray pulsars associated with young SNRs. Remarkably, these objects, taken together, represent at least half of the confirmed pulsars in supernova remnants. This being the case, these pulsars must be the progenitors of a vast population of previously unrecognized neutron stars.


Author(s):  
Richard A. Posner

You wouldn’t see the asteroid, even though it was several miles in diameter, because it would be hurtling toward you at 15 to 25 miles a second. At that speed, the column of air between the asteroid and the earth’s surface would be compressed with such force that the column’s temperature would soar to several times that of the sun, incinerating everything in its path. When the asteroid struck, it would penetrate deep into the ground and explode, creating an enormous crater and ejecting burning rocks and dense clouds of soot into the atmosphere, wrapping the globe in a mantle of fiery debris that would raise surface temperatures by as much as 100 degrees Fahrenheit and shut down photosynthesis for years. The shock waves from the collision would have precipitated earthquakes and volcanic eruptions, gargantuan tidal waves, and huge forest fires. A quarter of the earth’s human population might be dead within 24 hours of the strike, and the rest soon after. But there might no longer be an earth for an asteroid to strike. In a high-energy particle accelerator, physicists bent on re-creating conditions at the birth of the universe collide the nuclei of heavy atoms, containing large numbers of protons and neutrons, at speeds near that of light, shattering these particles into their constituent quarks. Because some of these quarks, called strange quarks, are hyperdense, here is what might happen: A shower of strange quarks clumps, forming a tiny bit of strange matter that has a negative electric charge. Because of its charge, the strange matter attracts the nuclei in the vicinity (nuclei have a positive charge), fusing with them to form a larger mass of strange matter that expands exponentially. Within a fraction of a second the earth is compressed to a hyperdense sphere 100 meters in diameter, explodes in the manner of a supernova, and vanishes. By then, however, the earth might have been made uninhabitable for human beings and most other creatures by abrupt climate changes.


2016 ◽  
Vol 69 (6) ◽  
pp. 1057-1064 ◽  
Author(s):  
Joo-Hee Oh ◽  
Nam-Suk Jung ◽  
Hee-Seock Lee ◽  
Seung-Kook Ko

Sign in / Sign up

Export Citation Format

Share Document