scholarly journals Evolutionary Aspects of Circumstellar Matter in Binary Systems

1973 ◽  
Vol 51 ◽  
pp. 216-259 ◽  
Author(s):  
Miroslav Plavec

Several groups of close binary stars are considered in an attempt to explain their present state as a consequence of a large-scale mass transfer or mass loss in the past: Algol-like semidetached binaries, some shell stars (AX Mon), some binary X-ray sources (Cen X-3, Her X-1), the recurrent nova T CrB, helium-rich binaries v Sgr and KS Per, and the symbiotic variables.Algol-like binaries like U Sge cannot be products of a conservative case A of mass transfer; rather, mass loss from system and/or a temporary contact stage must be invoked. Nova T CrB as well as the symbiotic variables probably contain a mass-losing giant and a helium star, which again may be a product of a previous mass transfer of type B. Similarly, some of the X-ray sources may actually be binaries undergoing a second process of mass transfer. The systems v Sgr and KS Per may contain helium stars expanding to the right of the helium main sequence, while the other component may be a rather inactive main-sequence star. Some shell stars may be products of mass transfer. Mass loss from convective envelopes is also discussed.Loss of mass and of angular momentum from many binary systems must be anticipated. Behavior of the mass-accreting stars may often be decisive for the appearance and evolution of the system.

1981 ◽  
Vol 59 ◽  
pp. 431-456
Author(s):  
Mirek J. Plavec

AbstractMass outflow from interacting close binary systems, accompanied by loss of orbital angular momentum, appears to be a very important process affecting the evolution of binary stars. Together with accretion on the mass-gaining component, it is the least understood aspect of the general complex process we call “evolution with mass transfer and/or mass loss”, or, more briefly, “interaction”. It is therefore very imperative to assemble and examine all available facts or hints about mass loss.


1998 ◽  
Vol 11 (1) ◽  
pp. 371-371
Author(s):  
S. Narusawa ◽  
A. Yamasaki ◽  
Y. Nakamura

Although the evolution of binary systems has been qualitatively interpreted with the evolutionary scenario, the quantitative interpretation of any observed system is still unsatisfactory due to the difficulty of the quantitative treatment of mass and angular momentum transfer/loss. To reach a true understanding of the evolution of binary systems, we have to accumulate more observational evidence. So far, we have observed several binaries that are short-period and noncontact, and found the existence of extremely small-mass systems. In the present paper, we study another short-period (P=0.659d), noncontact, eclipsing binary system, V392 Ori. We have made photometric and spectroscopic observations of V392 Ori. The light curves are found to vary, suggesting the existence of circumstellar matter around the system. Combining the photometric and spectroscopic results, we obtain parameters describing the system; we find the mass of the primary component is only 0.6Mʘ- undermassive for its spectral and luminosity class A5V, suggesting that a considerable amount of its original mass has been lost from the system during the course of evolution. The low-mass problem is very important for investigation of the evolution of close binary systems: largemass loss within and/or after the main-sequence will have a significant influence on the future evolution of binary systems.


1987 ◽  
Vol 93 ◽  
pp. 675-679
Author(s):  
V.G. Karetnikov

AbstractFrom the values of period changes for 6 close binary stars the mass transfer rate was calculated. Comparing these values Mt with the values of shell masses Msh, the expressionwas derived. The analysis of this expression points out the initial character of the outflow of matter, and one may determine the time interval of the substitution of the shell matter. So one may conclude that for a certain mass transfer rate, a certain amount of matter accumulates in the nearby regions of the system.


1985 ◽  
Vol 87 ◽  
pp. 230-243 ◽  
Author(s):  
Mirek J. Plavec

AbstractHydrogen-poor and helium-rich stars are easy to produce in interacting binaries. Thus they should be found among Population I binaries, in which a large-scale mass transfer has occurred between the components (possibly associated with mass loss from the system). For in such cases, those layers are now on the surface of the “loser” (and, most likely, also on the surface of the “gainer”) that were subject to hydrogen burning and the associated mixing of processed material. Helium overabundance in these objects will be accompanied by an overabundance of nitrogen and underabundance of carbon, as a result of the CNO process. All the Algol-like semidetached binaries should be mild helium stars; so far this has been demonstrated only in β Lyrae, for the He/H ratio is not extreme in such cases. Extreme helium stars require a more complex process, with two stages of mass transfer and/or loss (“case BB”); υ Sagittarii and KS Persei seem to be good examples of this process. The optically invisible components of these two stars seem to have been detected with the IUE. Good model atmospheres do not exist yet, so caution must be exercised in interpreting the UV data.


Author(s):  
Zhao Guo

The study of stellar oscillations allows us to infer the properties of stellar interiors. Meanwhile, fundamental parameters such as mass and radius can be obtained by studying stars in binary systems. The synergy between binarity and asteroseismology can constrain the parameter space of stellar properties and facilitate the asteroseismic inference. On the other hand, binarity also introduces additional complexities such tides and mass transfer. From an observational perspective, we briefly review the recent advances in the study of tidal effects on stellar oscillations, focusing on upper main sequence stars (F-, A-, or OB- type). The effect can be roughly divided into two categories. The first one concerns the tidally excited oscillations (TEOs) in eccentric binaries where TEOs are mostly due to resonances between dynamical tides and gravity modes of the star. TEOs appear as orbital-harmonic oscillations on top of the eccentric ellipsoidal light curve variations (the “heartbeat” feature). The second category is regarding the self-excited oscillations perturbed by static tides in circularized and synchronized close binaries. It includes the tidal deformation of the propagation cavity and its effect on eigenfrequencies, eigenfunctions, and the pulsation alignment. We list binary systems that show these two types of tidal effect and summarize the orbital and pulsation observables. We also discuss the theoretical approaches used to model these tidal oscillations and relevant complications such as non-linear mode coupling and resonance locking. Further information can be extracted from the observations of these oscillations which will improve our understanding of tides. We also discuss the effect of mass transfer, the extreme result of tides, on stellar oscillations. We bring to the readers' attention: (1) oscillating stars undergoing mass accretion (A-, F-, and OB type pulsators and white dwarfs), for which the pulsation properties may be changed significantly by accretion; (2) post-mass transfer pulsators, which have undergone a stable or unstable Roche-Lobe overflow. These pulsators have great potential in probing detailed physical processes in stellar interiors and mass transfer, as well as in studying the binary star populations.


1992 ◽  
Vol 151 ◽  
pp. 363-366
Author(s):  
Christopher A. Tout ◽  
Douglas S. Hall

Stars in close binary systems can suffer two kinds of mass change: 1) mass transfer between the stars 2) mass loss completely from the system. Observational estimates indicate that these are of the same order. A simple explanation can be found if the mass loss, by stellar wind, from the Roche-filling star is the driving mechanism behind mass transfer. We find quantitative estimates for the necessary conditions and find that the mass transfer rate and the mass loss rate are indeed similar. We find that the radii of evolved semi-detached systems are more consistent with wind-driven evolution than the traditional nuclear-driven Roche-lobe overflow.


1989 ◽  
Vol 107 ◽  
pp. 369-369
Author(s):  
C. A. Tout ◽  
P. P. Eggleton

AbstractThis work is concerned with binary systems that we call ‘moderately close’. These are systems in which the primary (by which we mean the initially more massive star) fills its Roche lobe when it is on the giant branch with a deep convective envelope but before helium ignition (late case B). We find that if the mass ratio q(= M1/M2) < qCrit = 0.7 when the primary fills its Roche lobe positive feedback will lead to a rapid hydrodynamic phase of mass transfer which will probably lead to common envelope evolution and thence to either coalescence or possibly to a close binary in a planetary nebula. Although most Algols have probably filled their Roche lobes before evolving off the main-sequence we find that some could not have and are therefore ‘moderately close’. Since rapid overflow is unlikely to lead to an Algol-like system there must be some way of avoiding it. The most likely possibility is that the primary can lose sufficient mass to reduce q below qcrit before overflow begins. Ordinary mass loss rates are insufficient but evidence that enhanced mass loss does take place is provided by RS CVn systems that have inverted mass ratios but have not yet begun mass transfer. We postulate that the cause of enhanced mass loss lies in the heating of the corona by by magnetic fields maintained by an α-ω dynamo which is enhanced by tidal effects associated with corotation. In order to model the the effects of enhanced mass loss we ignore the details and adopt an empirical approach calibrating a simple formula with the RS CVn system Z Her. Using further empirical relations (deduced from detailed stellar models) that describe the evolution of red giants we have investigated the effect on a large number of systems of various initial mass ratios and periods. These are notable in that some systems can now enter a much gentler Algol-like overflow phase and others are prevented from transferring mass altogether. We have also investigated the effects of enhanced angular momentum loss induced by corotation of the wind in the strong magnetic fields and consider this in relation to observed period changes. We find that a typical ‘moderately close’ Algol-like system evolves through an RS CVn like system and then possibly a symbiotic state before becoming an Algol and then goes on through a red giant-white dwarf state which may become symbiotic before ending up as a double white dwarf system in either a close or wide orbit depending on how much mass is lost before the secondary fills its Roche lobe.


1980 ◽  
Vol 88 ◽  
pp. 109-114
Author(s):  
Th.J. Van Der Linden

Numerical simulations of close binary evolution were performed for five binary systems, using a newly developed evolutionary program. The systems have masses 3+2, 4+3.2, 6+4, 9+6, 12+8 M⊙ and periods 2d, 1d78, 3d, 4d, 5d respectively. The primary component was followed from the zero-age main sequence through the mass transfer phase to core-helium burning. Special care was given to the self-consistent determination of the mass transfer rate and the detailed treatment of composition changes. After the mass transfer phase the resulting systems consist of a main sequence star with a helium star companion of mass 0.36, 0.46, 0.82, 1.48, 2.30 M⊙ for the five systems respectively. Interesting “thermal pulses” were found in the 3+2 M⊙ system at the onset of helium burning.


2020 ◽  
Vol 638 ◽  
pp. A145 ◽  
Author(s):  
G. Traven ◽  
S. Feltzing ◽  
T. Merle ◽  
M. Van der Swaelmen ◽  
K. Čotar ◽  
...  

Context. Binary stellar systems form a large fraction of the Galaxy’s stars. They are useful as laboratories for studying the physical processes taking place within stars, and must be correctly taken into account when observations of stars are used to study the structure and evolution of the Galaxy. The advent of large-scale spectroscopic and photometric surveys allows us to obtain large samples of binaries that permit characterising their populations. Aims. We aim to obtain a large sample of double-lined spectroscopic binaries (SB2s) by analysis of spectra from the GALAH survey in combination with photometric and astrometric data. A combined analysis will provide stellar parameters of thousands of binary stars that can be combined to form statistical observables of a given population. We aim to produce a catalogue of well-characterised systems, which can in turn be compared to models of populations of binary stars, or to follow-up individual systems of interest. Methods. We obtained a list of candidate SB2 systems from a t-distributed stochastic neighbour embedding (t-SNE) classification and a cross-correlation analysis of GALAH spectra. To compute parameters of the primary and secondary star, we used a Bayesian approach that includes a parallax prior from Gaia DR2, spectra from GALAH, and apparent magnitudes from APASS, Gaia DR2, 2MASS, and WISE. We used a Markov chain Monte Carlo approach to sample the posterior distributions of the following model parameters for the two stars: Teff[1,2], logg[1,2], [Fe/H], Vr[1,2], vmic[1,2], vbroad[1,2], R[1,2], and E(B−V). Results. We present results for 12 760 binary stars detected as SB2s. We construct the statistical observables T1∕T2, ΔVr, and R1∕R2, which demonstrate that our sample mostly consists of dwarfs, with a significant fraction of evolved stars and several dozen members of the giant branch. The majority of these binary stars is concentrated at the lower boundary of the ΔVr distribution, and the R1∕R2 ratio is mostly close to unity. The derived metallicity of our binary stars is statistically lower than that of single dwarf stars from the same magnitude-limited sample. Conclusions. Our sample of binary stars represents a large population of well-characterised double-lined spectroscopic binaries that are appropriate for statistical studies of the binary populations. The derived stellar properties and their distributions show trends that are expected for a population of close binary stars (a < 10 AU) detected through double lines in their spectra. Our detection technique allows us to probe binary systems with mass ratios 0.5 ≤q ≤ 1.


1976 ◽  
Vol 73 ◽  
pp. 35-61 ◽  
Author(s):  
E. P. J. Van Den Heuvel

The expected final evolution of massive close binaries (CB) in case B is reviewed. Primary stars with masses ≳ 12–15 M⊙ are, after loosing most of their envelope by mass exchange, expected to explode as supernovae, leaving behind a neutron star or a black hole.Conservative close binary evolution (i.e. without a major loss of mass and angular momentum from the system during the first stage of mass transfer) is expected to occur if the initial mass ratio q0 = M20/M10 is ≳ 0.3. In this case the primary star will be the less massive component when it explodes, and the system is almost never disrupted by the explosion. The explosion is followed by a long-lasting quiet stage (106–107 yr) when the system consists of a massive main-sequence star and an inactive compact companion. After the secondary has left the main-sequence and becomes a blue supergiant with a strong stellar wind, the system becomes a massive X-ray binary for a short while (2–5 × 104 yr).The numbers of Wolf-Rayet binaries and massive X-ray binaries observed within 3 kpc of the Sun are in reasonable agreement with the numbers expected on the basis of conservative CB evolution, which implies that several thousands of massive main-sequence stars with a quiet compact companion should exist in the Galaxy. About a dozen of these systems must be present among the stars visible to the naked eye. During the second stage of mass exchange, large loss of mass and angular momentum from the system is expected, leading to a rapid shrinking of the orbit. The supernova explosion of the secondary will in most cases disrupt the system. If it remains bound, the final system will consist of two compact stars and may resemble the binary pulsar PSR 1913 + 16.In systems with q0 ≲ 0.2–0.3 large mass loss from the system is expected during the first stage of mass exchange. The exploding primary will then be more massive than its unevolved companion and the first supernova explosion disrupts the system in most cases. In the rare cases that it remains bound, the system will have a large runaway velocity and, after a very long (108–109 yr) inactive stage evolves into a low-mass X-ray binary, possibly resembling Her X-1.


Sign in / Sign up

Export Citation Format

Share Document