scholarly journals The Formation of First Generation Stars and Globular Clusters in Protogalactic Clouds

2002 ◽  
Vol 187 ◽  
pp. 165-174
Author(s):  
D.N.C. Lin ◽  
S.D. Murray

Within collapsing protogalaxies, thermal instability leads to the formation of a population of cool fragments which are confined by the pressure of a residual hot background medium. The critical mass required for the cold clouds to become gravitationally unstable and to form stars is determined by both their internal temperature and external pressure. Massive first generation stars form in primordial clouds with sufficient column density to shield themselves from external UV photons emitted by nearby massive stars or AGNs. Less massive photoionized clouds gain mass as they undergo cohesive collisions with each other, and lose mass due to ram pressure stripping by the residual halo gas. Collisions may also trigger thermal instability and fragmentation into cloudlets. While most cloudlets have substellar masses, the largest become self-gravitating and collapse to form protostellar cores without further fragmentation. The initial stellar mass function is established as these cores capture additional residual cloudlets. Energy dissipation from the mergers ensures that the cluster remains bound in the limit of low star formation efficiency. Dissipation also promotes the formation and retention of the most massive stars in the cluster center. On the scale of the protogalactic clouds, the formation of massive stars generates intense UV radiation which photoionizes gas and quenches star formation in nearby regions. As gas density accumulates in the center of the the galactic potential, the self regulated star formation rate increases. At the location where most of the residual gas can be converted into stars on its internal dynamical timescale, a galaxy attains its asymptotic kinematic structure such as exponential profiles, Tully-Fisher, and Faber-Jackson laws.

1996 ◽  
Vol 174 ◽  
pp. 283-292
Author(s):  
D.N.C. Lin ◽  
S.D. Murray

We propose that proto-globular cluster clouds form in a collapsing protogalactic cloud as a consequence of thermal instability. The clouds are photoionized and heated by nearby massive stars. Most are not self-gravitating, but are confined by the residual hot gas in the protogalactic cloud. Their masses evolve as they undergo cohesive collisions with each other and erosion due to interaction with the residual halo gas. Collisions may also trigger thermal instability and fragmentation within protocluster clouds. The resulting cloudlets are pressure confined, and fall toward the center of the protocluster cloud due to inverse buoyancy. Their mass distribution is also regulated by coagulation and erosion. While most cloudlets have substellar masses, the largest become self-gravitating, and collapse to form protostellar cores without further fragmentation. The initial stellar mass function is established as these cores capture additional residual cloudlets. Energy dissipation from the mergers ensures that the cluster will remain bound in the limit of low star formation efficiency. Dissipation also promotes the formation and retention of the most massive stars in the cluster center.


1995 ◽  
Vol 164 ◽  
pp. 175-180
Author(s):  
Abhijit Saha

The aim of the study of the populations in a stellar system is to understand and be able to describe the stellar content of a system in terms of physical parameters such as the age, star formation history, chemical enrichment history, initial mass function (IMF), environment, and dynamical history of the system. This is done given an understanding of stellar evolution and the ability to express the outcome in “observer parameters”, particularly a color-magnitude diagram (CMD), kinematics, and metallicity. From this perspective, the simplest systems are the galactic clusters and the globular clusters, where all the component stars are coeval and of the same metallicity. The current state of knowledge for these are discussed by others in this conference. We proceed to the next level of complexity (where metallicities are not necessarily all the same, and nor are the stars all coeval), and try to decompose their stellar content, particularly in terms of star formation rate and metallicity. In this regard the two classes of objects that come to mind are the dwarf spheroidals, and the dwarf irregulars. Both these classes of objects are more massive than the open clusters and globular clusters, and show evidence of complexities in their star formation histories, without being so convolved as to make such a study intractable. As we shall see, recent studies along these lines have presented some puzzling problems. Moreover, these are the smallest independent galaxies, and the study of star formation in these is likely to shed light on the history and formation of larger and more complex galaxies.


Science ◽  
2018 ◽  
Vol 359 (6371) ◽  
pp. 69-71 ◽  
Author(s):  
F. R. N. Schneider ◽  
H. Sana ◽  
C. J. Evans ◽  
J. M. Bestenlehner ◽  
N. Castro ◽  
...  

The 30 Doradus star-forming region in the Large Magellanic Cloud is a nearby analog of large star-formation events in the distant universe. We determined the recent formation history and the initial mass function (IMF) of massive stars in 30 Doradus on the basis of spectroscopic observations of 247 stars more massive than 15 solar masses (M☉). The main episode of massive star formation began about 8 million years (My) ago, and the star-formation rate seems to have declined in the last 1 My. The IMF is densely sampled up to 200 M☉ and contains 32 ± 12% more stars above 30 M☉ than predicted by a standard Salpeter IMF. In the mass range of 15 to 200 M☉, the IMF power-law exponent is 1.90−0.26+0.37, shallower than the Salpeter value of 2.35.


2019 ◽  
Vol 14 (S351) ◽  
pp. 346-349
Author(s):  
Enrico Vesperini ◽  
Jongsuk Hong ◽  
Jeremy J. Webb ◽  
Franca D’Antona ◽  
Annibale D’Ercole

AbstractWe present a brief summary of the results of a study of the effects of dynamical evolution on the stellar mass function of multiple-population globular clusters. Theoretical studies have predicted that the process of multiple-population cluster formation results in a system in which second-generation (2G) stars are initially more centrally concentrated than first-generation (1G) stars. In the study presented here, we have explored the implications of the initial differences between the 2G and 1G structural properties for the evolution of the local (measured at different distances from a cluster center) and global mass function. We have studied both systems in which 1G and 2G stars start with the same initial mass function (IMF) and systems in which 1G and 2G stars have different IMFs. Finally we have explored the evolution of the spatial mixing and found that the multiscale nature of the clusters studied leads to a dependence of the mixing rate on the stellar mass.


2006 ◽  
Vol 2 (S237) ◽  
pp. 358-362
Author(s):  
M. K. Ryan Joung ◽  
Mordecai-Mark Mac Low

AbstractWe report on a study of interstellar turbulence driven by both correlated and isolated supernova explosions. We use three-dimensional hydrodynamic models of a vertically stratified interstellar medium run with the adaptive mesh refinement code Flash at a maximum resolution of 2 pc, with a grid size of 0.5 × 0.5 × 10 kpc. Cold dense clouds form even in the absence of self-gravity due to the collective action of thermal instability and supersonic turbulence. Studying these clouds, we show that it can be misleading to predict physical properties such as the star formation rate or the stellar initial mass function using numerical simulations that do not include self-gravity of the gas. Even if all the gas in turbulently Jeans unstable regions in our simulation is assumed to collapse and form stars in local freefall times, the resulting total collapse rate is significantly lower than the value consistent with the input supernova rate. The amount of mass available for collapse depends on scale, suggesting a simple translation from the density PDF to the stellar IMF may be questionable. Even though the supernova-driven turbulence does produce compressed clouds, it also opposes global collapse. The net effect of supernova-driven turbulence is to inhibit star formation globally by decreasing the amount of mass unstable to gravitational collapse.


2015 ◽  
Vol 12 (S316) ◽  
pp. 294-301
Author(s):  
Richard Wünsch ◽  
Jan Palouš ◽  
Guillermo Tenorio-Tagle ◽  
Casiana Muñoz-Tuñón ◽  
Soňa Ehlerová

AbstractMassive stars in young massive clusters insert tremendous amounts of mass and energy into their surroundings in the form of stellar winds and supernova ejecta. Mutual shock-shock collisions lead to formation of hot gas, filling the volume of the cluster. The pressure of this gas then drives a powerful cluster wind. However, it has been shown that if the cluster is massive and dense enough, it can evolve in the so–called bimodal regime, in which the hot gas inside the cluster becomes thermally unstable and forms dense clumps which are trapped inside the cluster by its gravity. We will review works on the bimodal regime and discuss the implications for the formation of subsequent stellar generations. The mass accumulates inside the cluster and as soon as a high enough column density is reached, the interior of the clumps becomes self-shielded against the ionising radiation of stars and the clumps collapse and form new stars. The second stellar generation will be enriched by products of stellar evolution from the first generation, and will be concentrated near the cluster center.


2019 ◽  
Vol 488 (2) ◽  
pp. 2202-2221 ◽  
Author(s):  
Jason Jaacks ◽  
Steven L Finkelstein ◽  
Volker Bromm

ABSTRACT We utilize gizmo, coupled with newly developed sub-grid models for Population III (Pop III) and Population II (Pop II), to study the legacy of star formation in the pre-reionization Universe. We find that the Pop II star formation rate density (SFRD), produced in our simulation (${\sim } 10^{-2}\ \mathrm{M}_\odot \, {\rm yr^{-1}\, Mpc^{-3}}$ at z ≃ 10), matches the total SFRD inferred from observations within a factor of <2 at 7 ≲ z ≲ 10. The Pop III SFRD, however, reaches a plateau at ${\sim }10^{-3}\ \mathrm{M}_\odot \, {\rm yr^{-1}\, Mpc^{-3}}$ by z ≈ 10, remaining largely unaffected by the presence of Pop II feedback. At z  = 7.5, ${\sim } 20{{\ \rm per\ cent}}$ of Pop III star formation occurs in isolated haloes that have never experienced any Pop II star formation (i.e. primordial haloes). We predict that Pop III-only galaxies exist at magnitudes MUV ≳ −11, beyond the limits for direct detection with the James Webb Space Telescope. We assess that our stellar mass function (SMF) and UV luminosity function (UVLF) agree well with the observed low mass/faint-end behaviour at z = 8 and 10. However, beyond the current limiting magnitudes, we find that both our SMF and UVLF demonstrate a deviation/turnover from the expected power-law slope (MUV,turn = −13.4 ± 1.1 at z  = 10). This could impact observational estimates of the true SFRD by a factor of 2(10) when integrating to MUV = −12 (−8) at z ∼ 10, depending on integration limits. Our turnover correlates well with the transition from dark matter haloes dominated by molecular cooling to those dominated by atomic cooling, for a mass Mhalo ≈ 108 M⊙ at z ≃ 10.


2019 ◽  
Vol 492 (2) ◽  
pp. 1706-1712
Author(s):  
Anton Vikaeus ◽  
Erik Zackrisson ◽  
Christian Binggeli

ABSTRACT The upcoming James Webb Space Telescope (JWST) will allow observations of high-redshift galaxies at fainter detection levels than ever before, and JWST surveys targeting gravitationally lensed fields are expected to bring z ≳ 6 objects with very low star formation rate (SFR) within reach of spectroscopic studies. As galaxies at lower and lower star formation activity are brought into view, many of the standard methods used in the analysis of integrated galaxy spectra are at some point bound to break down, due to violation of the assumptions of a well-sampled stellar initial mass function (IMF) and a slowly varying SFR. We argue that galaxies with SFR ∼ 0.1 M⊙ yr−1 are likely to turn up at the spectroscopic detection limit of JWST in lensed fields, and investigate to what extent star formation sampling may affect the spectral analysis of such objects. We use the slug spectral synthesis code to demonstrate that such effects are likely to have significant impacts on spectral diagnostics of, for example, the Balmer emission lines. These effects are found to stem primarily from SFRs varying rapidly on short (∼Myr) time-scales due to star formation in finite units (star clusters), whereas the effects of an undersampled IMF is deemed insignificant in comparison. In contrast, the ratio between the He ii- and H i-ionizing flux is found to be sensitive to IMF-sampling as well as ICMF-sampling (sampling of the initial cluster mass function), which may affect interpretations of galaxies containing Population III stars or other sources of hard ionizing radiation.


2020 ◽  
Vol 499 (1) ◽  
pp. 631-652
Author(s):  
J A Vázquez-Mata ◽  
J Loveday ◽  
S D Riggs ◽  
I K Baldry ◽  
L J M Davies ◽  
...  

ABSTRACT How do galaxy properties (such as stellar mass, luminosity, star formation rate, and morphology) and their evolution depend on the mass of their host dark matter halo? Using the Galaxy and Mass Assembly group catalogue, we address this question by exploring the dependence on host halo mass of the luminosity function (LF) and stellar mass function (SMF) for grouped galaxies subdivided by colour, morphology, and central/satellite. We find that spheroidal galaxies in particular dominate the bright and massive ends of the LF and SMF, respectively. More massive haloes host more massive and more luminous central galaxies. The satellites LF and SMF, respectively, show a systematic brightening of characteristic magnitude, and increase in characteristic mass, with increasing halo mass. In contrast to some previous results, the faint-end and low-mass slopes show little systematic dependence on halo mass. Semi-analytic models and simulations show similar or enhanced dependence of central mass and luminosity on halo mass. Faint and low-mass simulated satellite galaxies are remarkably independent of halo mass, but the most massive satellites are more common in more massive groups. In the first investigation of low-redshift LF and SMF evolution in group environments, we find that the red/blue ratio of galaxies in groups has increased since redshift z ≈ 0.3 relative to the field population. This observation strongly suggests that quenching of star formation in galaxies as they are accreted into galaxy groups is a significant and ongoing process.


Sign in / Sign up

Export Citation Format

Share Document