scholarly journals Structure and Kinematical Properties of the Galaxy at Intermediate Galactic Latitudes

1998 ◽  
Vol 179 ◽  
pp. 221-222
Author(s):  
D. K. Ojha ◽  
O. Bienaymé ◽  
A. C. Robin

We have carried out a sample survey in UBVR photometry and proper motions in various directions in the Galaxy. Three fields in the direction of galactic anticentre, centre, and antirotation have been surveyed. Using our new data together with wide-area surveys in other fields available to date, we discuss the radial and vertical structure of the Galaxy. Our results confirm that the thick disk population is distinct from other populations based on their kinematical and spatial distribution. The most probable value of scale height for the thick disk component is determined to be hz≃760±50 pc and a local density of ≃7.4+2.5−1.5% relative to the thin disk. The ratio of the number of thick disk stars in our galactic centre region to that in anticentre region yield hR≃3±1 kpc for the scale length of thick disk. These values are in perfect agreement with the recent determination given by Robin et al. (1996).

1967 ◽  
Vol 31 ◽  
pp. 239-251 ◽  
Author(s):  
F. J. Kerr

A review is given of information on the galactic-centre region obtained from recent observations of the 21-cm line from neutral hydrogen, the 18-cm group of OH lines, a hydrogen recombination line at 6 cm wavelength, and the continuum emission from ionized hydrogen.Both inward and outward motions are important in this region, in addition to rotation. Several types of observation indicate the presence of material in features inclined to the galactic plane. The relationship between the H and OH concentrations is not yet clear, but a rough picture of the central region can be proposed.


2021 ◽  
Vol 502 (1) ◽  
pp. 1246-1252
Author(s):  
M Zoccali ◽  
E Valenti ◽  
F Surot ◽  
O A Gonzalez ◽  
A Renzini ◽  
...  

ABSTRACT We analyse the near-infrared colour–magnitude diagram of a field including the giant molecular cloud G0.253+0.016 (a.k.a. The Brick) observed at high spatial resolution, with HAWK-I@VLT. The distribution of red clump stars in a line of sight crossing the cloud, compared with that in a direction just beside it, and not crossing it, allow us to measure the distance of the cloud from the Sun to be 7.20, with a statistical uncertainty of ±0.16 and a systematic error of ±0.20 kpc. This is significantly closer than what is generally assumed, i.e. that the cloud belongs to the near side of the central molecular zone, at 60 pc from the Galactic centre. This assumption was based on dynamical models of the central molecular zone, observationally constrained uniquely by the radial velocity of this and other clouds. Determining the true position of the Brick cloud is relevant because this is the densest cloud of the Galaxy not showing any ongoing star formation. This puts the cloud off by one order of magnitude from the Kennicutt–Schmidt relation between the density of the dense gas and the star formation rate. Several explanations have been proposed for this absence of star formation, most of them based on the dynamical evolution of this and other clouds, within the Galactic centre region. Our result emphasizes the need to include constraints coming from stellar observations in the interpretation of our Galaxy’s central molecular zone.


1995 ◽  
Vol 166 ◽  
pp. 368-368
Author(s):  
Devendra Ojha ◽  
Olivier Bienaymé

We have been doing a sample survey in UBV photometry and proper motions as part of an investigation of galactic structure and evolution. The 3 fields in the direction of galactic anticentre (l = 167°, b = 47°), centre (l = 3°, b = 47°) and antirotation (l = 278°, b = 47°) have been surveyed. The high astrometric quality of the MAMA machine (CAI, Paris) gives access to micronic accuracy (leading to < 2 mas per year) on proper motions with a 35 years time base. The kinematical distribution of F and G–type stars have been probed to distances up to 2.5 kpc above the galactic plane. We have derived the constrain on the structural parameters of the thin and thick disk components of the Galaxy (Ojha et al. 1994abc): • The scale lengths of the thin and thick disks are found to be 2.6±0.1 and 3.3±0.5 kpc, respectively. The density laws for stars with 3.5≤MV≤5 as a function of distance above the plane follow a single exponential with scale height of ∼ 260 pc (thin disk) and a second exponential with scale height of ∼ 800 pc (thick disk) with a local normalization of 5–6% of the disk.• The thin disk population was found with (〈 U+W〉, 〈V〉) = (1±4, −14±2) km/s and velocity dispersions (σU+W, σV) = (35±2, 30±1) km/s. The thick disk population was found to have a rotational velocity of Vrot = 177 km/s and velocity dispersions (σU, σV, σW) = (67,51,42) km/s. No dependence with r and z distances was found in the asymmetric drift measurements of the thick disk population.


1977 ◽  
Vol 45 ◽  
pp. 119-120
Author(s):  
R. D. Davies ◽  
R. J. Cohen

An investigation of the central regions of the Galaxy has been made with an angular resolution of ~10 arcmin with the radio telescopes at Jodrell Bank using the spectral lines of HI (λ21 cm), OH (λ18 cm) and H2CO (λ6 cm). Observations of radio recombination lines in the range (λ21 to 125 cm) have also been taken. These data taken together provide information on the velocity field and gas distribution in the galactic centre region. A continuing programme of spectral line observations of the galactic centre is being pursued at Jodrell Bank.


1994 ◽  
Vol 161 ◽  
pp. 435-439
Author(s):  
C. Soubiran

A sample including 2370 stars with (U, V) velocities has been analyzed up to z = 2.5 kpc. It is shown that the observed vertical gradient in the velocity distribution can be explained by the sum of 3 discrete populations with constant kinematics. The observations are well fitted by exponential density laws for the thin disk and the thick disk with scale lengths of 280 pc and 700 pc respectively, and with local densities of 6% and 0.15% for the thick disk and halo respectively.


1996 ◽  
Vol 169 ◽  
pp. 311-316
Author(s):  
P.J. Boyce ◽  
R. J. Cohen

The galactic centre contains the largest concentration of molecular clouds in the Galaxy. The clouds in the central region are unusual in having large linewidths and masses, and large non-circular motions. Previous surveys of their distribution in the central region have been carried out in OH (Robinson & McGee 1970; Cohen & Few 1976), H2CO (Whiteoak & Gardner 1979; Cohen & Few 1981), CO (Bania 1977; Dame et al. 1987; Bally et al. 1987, 1988) and CS (Bally et al. 1987, 1988). The OH groundstate lines at 18cm wavelength have certain advantages for such a survey. The OH lines appear in absorption against the galactic centre continuum sources, and against the continuum emission from the disk of the Galaxy. The absorption spectra are sensitive to relatively small molecular column densities. In addition they can give information on the relative positions of the molecular gas and the radio continuum sources. This paper describes results from an absorption line survey of the galactic centre region in the OH main lines at 1667.359 MHz and 1665.402 MHz (Boyce & Cohen 1994).


1977 ◽  
Vol 3 (2) ◽  
pp. 150-152 ◽  
Author(s):  
F. F. Gardner ◽  
J. B. Whiteoak

Although it is well known that HII regions are present in the innermost regions of the Galaxy their kinematics are still not fully understood. In one study Pauls et al. (1976) surveyed with a beamwidth of 3′ arc the 10 GHz recombination line emission in directions within 15′ arc of the nuclear radio source Sgr A. They found that the emission velocities varied from position to position within the range -50 to + 50 km s-1but appeared to lack any overall pattern. In contrast, we have recently observed the recombination line emission from the galactic centre region with a beamwidth of 4′.5 arc, and find strong evidence of ordered motions near the galactic nucleus.


2020 ◽  
Vol 492 (3) ◽  
pp. 4164-4174 ◽  
Author(s):  
James M M Lane ◽  
Julio F Navarro ◽  
Azadeh Fattahi ◽  
Kyle A Oman ◽  
Jo Bovy

ABSTRACT The Ophiuchus stream is a short arc-like stellar feature of uncertain origin located ∼5 kpc North of the Galactic centre. New proper motions from the second Gaia data release reconcile the direction of motion of stream members with the stream arc, resolving a puzzling mismatch reported in earlier work. We use N-body simulations to show that the stream is likely only on its second pericentric passage, and thus was formed recently. The simulations suggest that most of the disrupted progenitor is visible in the observed stream today, and that little further tidal debris is expected to lie beyond the ends of the stream. The luminosity, length, width, and velocity dispersion of the stream suggest a globular cluster (GC) progenitor substantially fainter and of lower surface brightness than estimated in previous work, and unlike any other known globulars in the Galaxy. This result suggests the existence of clusters that would extend the known GC population to fainter and more weakly bound systems than hitherto known. How such a weakly bound cluster of old stars survived until it was disrupted so recently, however, remains a mystery. Integrating backwards in time, we find that the orbits of Sagittarius and Ophiuchus passed within ∼5 kpc of each other about ∼100 Myr ago, an interaction that might help resolve this puzzle.


2001 ◽  
Vol 18 (4) ◽  
pp. 431-442 ◽  
Author(s):  
Geoffrey V. Bicknell ◽  
Jianke Li

AbstractThe non-thermal filaments in the Galactic centre constitute one of the great mysteries of this region of the Galaxy. We summarise the observational data on these filaments and critically review the various theories which currently outnumber the observed filaments. We summarise our theory for the longest of these filaments, the Snake, and discuss the relevance of this model for the other filaments in the Galactic centre region. The physics involved in our model for the Snake involves much of the physics that has dominated the career of Professor Don Melrose. In particular, the diffusion of relativistic electrons in the Snake is determined from the theory of resonant scattering by Alfvén waves.


1967 ◽  
Vol 31 ◽  
pp. 177-179
Author(s):  
W. W. Shane

In the course of several 21-cm observing programmes being carried out by the Leiden Observatory with the 25-meter telescope at Dwingeloo, a fairly complete, though inhomogeneous, survey of the regionl11= 0° to 66° at low galactic latitudes is becoming available. The essential data on this survey are presented in Table 1. Oort (1967) has given a preliminary report on the first and third investigations. The third is discussed briefly by Kerr in his introductory lecture on the galactic centre region (Paper 42). Burton (1966) has published provisional results of the fifth investigation, and I have discussed the sixth in Paper 19. All of the observations listed in the table have been completed, but we plan to extend investigation 3 to a much finer grid of positions.


Sign in / Sign up

Export Citation Format

Share Document