scholarly journals The Vertical Structure and Kinematics of the Galaxy

1994 ◽  
Vol 161 ◽  
pp. 435-439
Author(s):  
C. Soubiran

A sample including 2370 stars with (U, V) velocities has been analyzed up to z = 2.5 kpc. It is shown that the observed vertical gradient in the velocity distribution can be explained by the sum of 3 discrete populations with constant kinematics. The observations are well fitted by exponential density laws for the thin disk and the thick disk with scale lengths of 280 pc and 700 pc respectively, and with local densities of 6% and 0.15% for the thick disk and halo respectively.

2004 ◽  
Vol 21 (2) ◽  
pp. 121-125 ◽  
Author(s):  
Akihiko Ibukiyama

AbstractWe derive age–metallicity relations (AMRs) and orbits for the 1658 solar neighbourhood stars for which accurate distances are measured by the Hipparcos satellite. The sample comprises 1382 thin disk stars, 229 thick disk stars, and 47 halo stars according to their orbital parameters. We find a considerable scatter for thin disk AMRs along the one-zone Galactic chemical evolution (GCE) model. Orbits and metallicities of thin disk stars show no clear relation to each other. The scatter along the AMR exists even if stars with the same orbits are selected. We examine simple extensions of one-zone GCE models which account for inhomogeneity in the effective yield and inhomogeneous star formation rate in the Galaxy. Both extensions of the one-zone GCE model cannot account for the scatter in the age–[Fe/H]–[Ca/Fe] relation simultaneously. We conclude, therefore, that the scatter along the thin disk AMR is an essential feature in the formation and evolution of the Galaxy. The AMR for thick disk stars shows that star formation terminated 8 Gyr ago in the thick disk. As previously reported, thick disk stars are more Ca-rich than thin disk stars with the same [Fe/H]. We find that thick disk stars show a vertical abundance gradient. These three facts — AMR, vertical gradient, and [Ca/Fe]–[Fe/H] relation — support monolithic collapse and/or accretion of satellite dwarf galaxies as likely thick disk formation scenarios.


1994 ◽  
Vol 161 ◽  
pp. 420-422
Author(s):  
T. Yamagata ◽  
Y. Yoshii

The spatial distribution of metal abundance in the Galaxy has been analyzed using the UBV starcount data recently obtained in two high-latitude regions of the North Galactic Pole (NGP) and Selected Area 54 (SA54). A least-squares analysis was performed to determine the vertical metallicity gradient for each of the thin and thick disk components that gives a reasonable fit to the observed U-B and B-V colour distributions to V = 18 mag. The most probable value of the vertical gradient is obtained as d[Fe/H]/dz = −0.5 kpc−1 for the thin disk, and −0.1 kpc−1 for the thick disk.


1995 ◽  
Vol 164 ◽  
pp. 386-386
Author(s):  
C. Soubiran ◽  
M.N. Perrin ◽  
R. Cayrel ◽  
E. Chereul

The aim of our stellar population study is to investigate the kinematical and chemical characteristics of the thin disk, thick disk and halo of the Galaxy. We have selected 51 stars in 2 astrometric and photometric surveys at l = 42°, b = +79° (Soubiran 1992) and l = 167°, b = +47° (Ojha et al. 1994), on the basis of the Reduced Proper Motion Diagram. They were observed with the 193cm telescope at Observatoire de Haute-Provence, with the CARELEC spectrograph (dispersion of 66Å/mm, FWHM of 3.0Å, range λλ4600 – 5500Å), together with 43 comparison stars with known fundamental parameters. The derivation of Teff, logg and [Fe/H] was done differentially using a grid of synthetic spectra and the comparison stars, as described in Cayrel et al. (1991). Twenty of the target stars were found to be more deficient than −0.5. In the (V, [Fe/H]) distribution, the halo stars are clearly separated from the other stars with a mean of (V, [Fe/H]) ≃ (−210km/s, – 1.4dex). Because of the small size of the sample, it was not possible to discriminate the thick disk from the thin disk. We have taken 200 more spectra, and with these new observations, we hope to be able to deconvolve the 3 populations in the (U, V, W, [Fe/H]) space as we did previously with the (U, V) velocity (Soubiran 1993).


1998 ◽  
Vol 179 ◽  
pp. 221-222
Author(s):  
D. K. Ojha ◽  
O. Bienaymé ◽  
A. C. Robin

We have carried out a sample survey in UBVR photometry and proper motions in various directions in the Galaxy. Three fields in the direction of galactic anticentre, centre, and antirotation have been surveyed. Using our new data together with wide-area surveys in other fields available to date, we discuss the radial and vertical structure of the Galaxy. Our results confirm that the thick disk population is distinct from other populations based on their kinematical and spatial distribution. The most probable value of scale height for the thick disk component is determined to be hz≃760±50 pc and a local density of ≃7.4+2.5−1.5% relative to the thin disk. The ratio of the number of thick disk stars in our galactic centre region to that in anticentre region yield hR≃3±1 kpc for the scale length of thick disk. These values are in perfect agreement with the recent determination given by Robin et al. (1996).


2019 ◽  
Vol 63 (9) ◽  
pp. 726-738 ◽  
Author(s):  
L. I. Mashonkina ◽  
M. D. Neretina ◽  
T. M. Sitnova ◽  
Yu. V. Pakhomov

1997 ◽  
Vol 180 ◽  
pp. 406-406
Author(s):  
F. Cuisinier ◽  
J. Köppen

The vertical structure of the Galaxy is stratified in different populations. Gas and young stars have a low velocity dispersion (about 10 km/s) and thus are confined in a very thin disk (100 pc of scale height). Old stars have larger velocity dispersions, and are thus encountered up to a few kpc.


1995 ◽  
Vol 164 ◽  
pp. 99-107
Author(s):  
Gerard Gilmore

Correlations between stellar kinematics and chemical abundances are fossil evidence for evolutionary connections between Galactic structural components. Extensive stellar surveys show that the only tolerably clear distinction between galactic components appears in the distributions of specific angular momentum. Here the stellar metal-poor halo and the metal-rich bulge are indistinguishable from each other, as are the thick disk and the old disk. Each pair is very distinct from the other. This leads to an evolutionary model in which the metal-poor stellar halo evolves into the inner bulge, while the thick disk is a precursor to the thin disk. These evolutionary sequences are distinct. The galaxy is made of two discrete “populations”, one of low and one of high angular momentum. Some (minor?) complexity is added to this picture by the debris of late and continuing mergers, which will be especially important in the outer stellar halo.


2013 ◽  
Vol 9 (S298) ◽  
pp. 400-400
Author(s):  
Y. Q. Chen ◽  
G. Zhao ◽  
L. Mashonkina ◽  
J. R. Shi ◽  
H. W. Zhang ◽  
...  

AbstractApproximately 80 stars from the thin disk, the thick disk and the halo of the Galaxy, in the range of −3.0 < [Fe/H] < +0.5, surface gravity of 3.0 < logg < 4.7 and temperature of 4500 K < Teff < 6500 K, have been observed with the Shane/Hamilton and CFHT/Espadons spectrographs in order to carry out a systematic NLTE study of nearby stars in a consistent way. We will determine reliably stellar parameters and determine precise elemental abundances via a comprehensive NLTE analysis of the spectral lines of Li, Na, Mg, Al, Si, K, Ca, Sc, Mn, Fe, Sr, Zr, Ba, Nd, and Eu elements. Finally, we aim to investigate the chemical evolution of the Galaxy through different stellar populations based on the NLTE abundances for total 15 elements.


2021 ◽  
pp. 117-122
Author(s):  
V. A. MARSAKOV ◽  
M. L. GOZHA ◽  
V. V. KOVAL

It was shown that stellar populations of the Galaxy with the thick disk kinematics, namely globular clusters, field RR Lyrae variables (lyrids), and nearby field F - G stars, have different chemical compositions. Based on the analysis of the nature of the dependencies of [alpha/Fe] on [Fe/H] for these objects, it was concluded that the thick disk subsystem in the Galaxy is composite, and at least three components independently exist inside it. The oldest subsystem consists of the metal-rich globular clusters which were formed from a single protogalactic cloud shortly after onset of the explosions of type Ia supernova in it. Then a subsystem of the field thick disk stars was formed as a result of the "heating" of the stars of the primary thin disk already formed in the Galaxy by a rather massive dwarf satellite galaxy which fell onto the Galaxy. And, finally, the subsystem of field stars (including the lyrids) with the kinematics of not only the thick, but even the thin disk that fell onto the Galaxy from this captured satellite galaxy.


Sign in / Sign up

Export Citation Format

Share Document