scholarly journals An Extension of the Search for Spectroscopic Binaries in M3

1985 ◽  
Vol 113 ◽  
pp. 99-101
Author(s):  
Carlton P. Pryor ◽  
David W. Latham ◽  
Martha L. Hazen-Liller

We have obtained 295 new radial velocities for the 112 giants in the globular cluster M3 previously observed by Gunn and Griffin. Our velocities have a typical accuracy of 0.8 km/s per measurement and have been combined with the Gunn and Griffin data in order to search for radial velocity variations over a time span of ten years. We find no convincing evidence that any of the giants observed are spectroscopic binaries with one notable exception, von Zeipel 164, which we believe is the first spectroscopic binary to be found in a globular cluster. Modelling of the velocity variations that would be expected in our data for a variety of binary populations confirms Gunn and Griffin's conclusion that binaries with separations of less than 10 AU must occur much less frequently among the giants of M3 than among the population I field stars.

2002 ◽  
Vol 185 ◽  
pp. 376-377
Author(s):  
V.M. Woolf ◽  
C.S. Jeffery ◽  
D.L. Pollacco

AbstractWe have performed high-speed spectroscopy of the pulsating subdwarf B star PG 1605+072. Its radial velocity variations have frequencies similar to those reported from photometric observations. Peak amplitude ratios are different, probably as a result of power shifting between modes over time. Line-shape variations have also been detected.


1992 ◽  
Vol 135 ◽  
pp. 67-72
Author(s):  
Gordon A.H. Walker

AbstractCurrent techniques for the detection of long-term, low-amplitude (<50 m s−1), radial velocity variations are briefly reviewed together with some of their most successful programs. In the era of 8- to 10-m telescopes we must strive for a precision of < 1ms−1.


1983 ◽  
Vol 62 ◽  
pp. 104-107
Author(s):  
Frank Gieseking

The frequency distribution of SB’s over apparent visual magnitude emerging from the catalogue of Batten et. al. (1978) shows a very steep decrease of the number of spectroscopically detected SB’s already for such bright stars of magnitude 7. Considering the number of all stars in the individual magnitude intervals, we find a kind of completeness parameter of the spectroscopic surveys: If we scale it somewhat optimistically at 100% between 0 and 3 mag, we see a 50% decrease of the completeness of our knowledge of stellar radial velocities already for stars fainter than 4.5 mag.This situation is mainly due to the fact that the measurement of radial velocities with conventional slit spectrographs is extremely laborious, requiring long exposure times at large telescopes for the exposure of only one spectrum at a time. – Therefore more efficient methods for radial velocity determinations of fainter stars are urgently needed.


1985 ◽  
Vol 87 ◽  
pp. 191-197
Author(s):  
A.V. Raveendran ◽  
B.N. Ashoka ◽  
N. Kameswara Rao

Abstract:Fourier analysis of the light curves of RCrB in V band near maximum shows that in addition to several significant short periods there is a modulation of the visual light with a period around 1170 day, similar to that of L band flux, noticed by strecker. This indicates that there is some contribution to the visual light variations of the star from the pulsating circumstellar dust. Radial velocities of R CrB obtained at Kavalur during February-May 1985 show variations with a period around 47 days.


1989 ◽  
Vol 114 ◽  
pp. 163-166
Author(s):  
Diana Foss

This poster reports the results of a search for variable radial velocities in 29 DA white dwarfs. The survey was sensitive to periods between 1h and 66d, although non-ideal sampling limited the longest practically detectable period to 2d. Three stars were discovered to have radial velocity shifts at above the 3σ level. The discovery of these stars, along with that of Saffer, et al. (1988) can put only a lower limit on the space density of close binary white dwarfs, as this survey was less than 100% efficient in detecting radial velocity variations, and its efficiency depended strongly on period.


1988 ◽  
Vol 132 ◽  
pp. 79-81
Author(s):  
Bruce Campbell ◽  
Gordon A. H. Walker

We have monitored changes in the radial velocities of 24 bright F, G and K dwarf stars (known spectroscopic binaries excluded) for the past six years at CFHT by imposing the absorption lines of HF gas in the spectra to act as wavelength fiducials. The average external error in the δ(velocities) which are based on some 16 stellar lines is 13 m/s corresponds to 0.6 micron in the spectrum or 0.04 of a diode spacing per line. Reductions are complete for 16 stars. There is no evidence for brown dwarf companions in the sample. Two previously unknown spectroscopic binaries were found, and seven stars show indications of significant, long-term, low-level velocity variations which could be interpreted as purturbations by companions of a few Jupiter masses with periods greater than 12 years except for γ Cep, which may have a period of 2.7 years, and ε Eri. Observing time has been guaranteed for at least two more years at CFHT.


2001 ◽  
Vol 200 ◽  
pp. 165-168 ◽  
Author(s):  
Eike W. Guenther ◽  
Viki Joergens ◽  
Ralph Neuhäuser ◽  
Guillermo Torres ◽  
Natalie Stout Batalha ◽  
...  

We give here an overview of the current state of our survey for pre-main sequence spectroscopic binaries. Up to now we have taken 739 spectra of 250 pre-main sequence stars. We find that 8% of the stars show significant radial velocity variations, and are thus most likely spectroscopic binaries. In addition to the targets showing radial velocity variations, 6% of the targets are double-lined spectroscopic binaries i.e., the total fraction of spectroscopic binaries is expected to be about 14%. All short-period SB2s are monitored photometrically in order to search for eclipses. An eclipsing SB2 would allow the direct measurement of the masses of both stellar components. Measurements of the stellar masses together with determinations of the stellar radii are a crucial test of evolutionary tracks of pre-main sequence stars.


2019 ◽  
Vol 625 ◽  
pp. A22 ◽  
Author(s):  
Katja Reichert ◽  
Sabine Reffert ◽  
Stephan Stock ◽  
Trifon Trifonov ◽  
Andreas Quirrenbach

Context. Radial-velocity variations of the K giant star Aldebaran (α Tau) were first reported in the early 1990s. After subsequent analyses, the radial-velocity variability with a period of ∼629 d has recently been interpreted as caused by a planet of several Jovian masses. Aims. We want to further investigate the hypothesis of an extrasolar planet around Aldebaran. Methods. We combine 165 new radial-velocity measurements from Lick Observatory with seven already published data sets comprising 373 radial-velocity measurements. We perform statistical analyses and investigate whether a Keplerian model properly fits the radial velocities. We also perform a dynamical stability analysis for a possible two-planet solution. Furthermore, the possibility of oscillatory convective modes as cause for the observed radial-velocity variability is discussed. Results. As best Keplerian fit to the combined radial-velocity data we obtain an orbit for the hypothetical planet with a smaller period (P = 607 d) and a larger eccentricity (e = 0.33 ± 0.04) than the previously proposed one. However, the residual scatter around that fit is still large, with a standard deviation of 117 ms−1. In 2006/2007, the statistical power of the ∼620 d period showed a temporary but significant decrease. Plotting the growth of power in reverse chronological order reveals that a period around 620 d is clearly present in the newest data but not in the data taken before ∼2006. Furthermore, an apparent phase shift between radial-velocity data and orbital solution is observable at certain times. A two-planet Keplerian fit matches the data considerably better than a single-planet solution, but poses severe dynamical stability issues. Conclusions. The radial-velocity data from Lick Observatory do not further support but in fact weaken the hypothesis of a substellar companion around Aldebaran. Oscillatory convective modes might be a plausible alternative explanation of the observed radial-velocity variations.


2020 ◽  
Vol 493 (2) ◽  
pp. 2805-2816 ◽  
Author(s):  
Mukremin Kilic ◽  
A Bédard ◽  
P Bergeron ◽  
Alekzander Kosakowski

ABSTRACT We present radial velocity observations of four binary white dwarf candidates identified through their overluminosity. We identify two new double-lined spectroscopic binary systems, WD 0311–649 and WD 1606+422, and constrain their orbital parameters. WD 0311–649 is a 17.7 h period system with a mass ratio of 1.44 ± 0.06 and WD 1606+422 is a 20.1 h period system with a mass ratio of 1.33 ± 0.03. An additional object, WD 1447–190, is a 43 h period single-lined white dwarf binary, whereas WD 1418–088 does not show any significant velocity variations over time-scales ranging from minutes to decades. We present an overview of the 14 overluminous white dwarfs that were identified by Bédard et al., and find the fraction of double- and single-lined systems to be both 31 per cent. However, an additional 31 per cent of these overluminous white dwarfs do not show any significant radial velocity variations. We demonstrate that these must be in long-period binaries that may be resolved by Gaia astrometry. We also discuss the overabundance of single low-mass white dwarfs identified in the SPY survey, and suggest that some of those systems are also likely long-period binary systems of more massive white dwarfs.


Sign in / Sign up

Export Citation Format

Share Document