scholarly journals The Luminous Stellar Content of 30 Doradus and NGC 3603 - The Nearest Visible Giant HII Regions

1986 ◽  
Vol 116 ◽  
pp. 233-234
Author(s):  
A.F.J. Moffat ◽  
M.M. Shara ◽  
W. Seggewiss

30 Dor in the LMC and NGC 3603 in the Galaxy are the nearest visible examples of similar giant (or even more massive supergiant) HII regions being studied in other more distant galaxies, where spatial resolution is a much more serious problem. Hence, understanding 30 Dor and NGC 3603 may provide important clues to understanding extragalactic giant HII regions in general.

1984 ◽  
Vol 108 ◽  
pp. 243-253
Author(s):  
Nolan R. Walborn

The supergiant H II region 30 Doradus is placed in context as the optically most spectacular component in a much larger region of recent and current star formation in the Large Magellanic Cloud, as shown by deep Hα photographs and the new IRAS results. The current state of knowledge concerning the concentrated central cluster in 30 Dor is summarized. Spectroscopic information exists for only 24 of the brightest members, most of which are WR stars; however, photometry shows over 100 probable members earlier than BO. The spectral classification of these stars is a difficult observational problem currently being addressed; in the meantime their hypothetical ionizing luminosity is calculated from the photometry and compared with that suggested for the superluminous central object R136a alone, and with the H II region luminosity. With reference to related regions in the Galaxy, the likelihood that many of the brightest objects in 30 Dor are multiple systems is emphasized. An interpretation of R136a as a system containing a few very massive stars (as opposed to a single supermassive object) is in good accord with the observations, including the visual micrometer results. The study of 30 Dor and its central cluster is vital for an understanding of the numerous apparently similar regions now being discovered in more distant galaxies.


1986 ◽  
Vol 116 ◽  
pp. 185-198 ◽  
Author(s):  
Nolan R. Walborn

Three areas of current progress relevant to the theme of this Symposium will be discussed. (1) New spectroscopic observations of the 30 Doradus central cluster, obtained independently by the author and by J. Melnick, confirm the presence of numerous very early O-type members, including several of type O3. In combination with sophisticated new direct imagery of the luminous central object R136 by A. Walker and by G. Weigelt, these results have evident implications for understanding the ionization of the supergiant H II region, as well as for the interpretation of R136 itself and of the apparently similar regions seen in more distant galaxies. In particular, no evidence remains for a supermassive object in 30 Doradus, but its central cluster is revealed as a spectacular grouping of very massive hot stars. (2) A further member of the Ofpe/WN9 category in the LMC has been identified, bringing their number to seven, with no exact spectroscopic counterparts yet known in the Galaxy. One of these objects is currently in a state of outburst and has been interpreted by O. Stahl et al. as the hottest known Hubble-Sandage variable. (3) An extensive survey of IUE high-resolution data has revealed a strong correlation between the ultraviolet stellar wind features and the optical spectral classifications for the majority of normal O stars. These results are relevant to future studies with the High Resolution Spectrograph on the Hubble Space Telescope, which may observe restricted UV wavelength ranges in faint extragalactic OB stars lacking optical data of comparable quality.


Author(s):  
Joris Witstok ◽  
Renske Smit ◽  
Roberto Maiolino ◽  
Mirko Curti ◽  
Nicolas Laporte ◽  
...  

Abstract We present a detailed spectroscopic analysis of a galaxy at z ≃ 4.88 that is, by chance, magnified ∼30 × by gravitational lensing. Only three sources at z ≳ 5 are known with such high magnification. This particular source has been shown to exhibit widespread, high equivalent width ${\rm C\, {\small IV}}\, \lambda \, 1549$ emission, implying it is a unique example of a metal-poor galaxy with a hard radiation field, likely representing the galaxy population responsible for cosmic reionisation. Using UV nebular line ratio diagnostics, VLT/X-shooter observations rule out strong AGN activity, indicating a stellar origin of the hard radiation field instead. We present a new detection of ${[\rm Ne\, {\small III}]}\, \lambda \, 3870$ and use the [Ne iii]/[O ii] line ratio to constrain the ionisation parameter and gas-phase metallicity. Closely related to the commonly used [O iii]/[O ii] ratio, our [Ne iii]/[O ii] measurement shows this source is similar to local “Green Pea” galaxies and Lyman-continuum leakers. It furthermore suggests this galaxy is more metal poor than expected from the Fundamental Metallicity Relation, possibly as a consequence of excess gas accretion diluting the metallicity. Finally, we present the highest redshift detection of ${\rm Mg\, {\small II}}\, \lambda \, 2796$, observed at high equivalent width in emission, in contrast to more evolved systems predominantly exhibiting Mg ii absorption. Strong Mg ii emission has been observed in most z ∼ 0 Lyman-continuum leakers known and has recently been proposed as an indirect tracer of escaping ionising radiation. In conclusion, this strongly lensed galaxy, observed just 300 Myr after reionisation ends, enables testing of observational diagnostics proposed to constrain the physical properties of distant galaxies in the JWST/ELT era.


1976 ◽  
Vol 29 (3) ◽  
pp. 211 ◽  
Author(s):  
FF Gardner ◽  
BJ Robinson ◽  
MW Sinclair

The 9 cm ground-state lines of CH have been observed in southern galactic sources, mainly HII regions. The F = 0-1 transition at 3264 MHz has been detected in emission in 16 sources; the F = 1-1 transition at 3335 MHz has been seen in absorption in 5 sources and in emission in 2 others. Where the F = 1-1 transition is in absorption the transition temperature is positive and below about 100 K. The F = 0-1 transition is generally inverted, with a transition temperature between -10 and 0 K. The column densities of CH are in the vicinity of lO'4 cm-2, slightly below those for OH but many times those for H2CO. There is no correlation between apparent optical depths of CH and those for OH or H2CO absorption. There is also no enhancement of CH in the dense molecular clouds near the centre of the Galaxy.


2020 ◽  
Vol 634 ◽  
pp. A124 ◽  
Author(s):  
M. Bellazzini ◽  
F. Annibali ◽  
M. Tosi ◽  
A. Mucciarelli ◽  
M. Cignoni ◽  
...  

We present the first analysis of the stellar content of the structures and substructures identified in the peculiar star-forming galaxy NGC 5474, based on Hubble Space Telescope resolved photometry from the LEGUS survey. NGC 5474 is a satellite of the giant spiral M 101, and it is known to have a prominent bulge that is significantly off-set from the kinematic centre of the underlying H I and stellar disc. The youngest stars (age ≲ 100 Myr) trace a flocculent spiral pattern extending out to ≳8 kpc from the centre of the galaxy. On the other hand, intermediate-age (age ≳ 500 Myr) and old (age ≳ 2 Gyr) stars dominate the off-centred bulge and a large substructure residing in the south-western part of the disc (SW over-density) and they are not correlated with the spiral arms. The old age of the stars in the SW over-density suggests that this may be another signature of any dynamical interactions that have shaped this anomalous galaxy. We suggest that a fly by with M 101, generally invoked as the origin of the anomalies, may not be sufficient to explain all the observations. A more local and more recent interaction may help to put all the pieces of this galactic puzzle together.


1984 ◽  
Vol 78 ◽  
pp. 257-260
Author(s):  
K. Ishida

AbstractStellar content contributing to near IR radiation do not show radial differentiation in the Galaxy. Late-type giants and supergiants supply about 70% of the total volume emissivity at the K band, in the solar vicinity within 1 kpc, and also at the distance of several kpc in the Scutum region.


2020 ◽  
Vol 498 (3) ◽  
pp. 4205-4221
Author(s):  
N Vale Asari ◽  
V Wild ◽  
A L de Amorim ◽  
A Werle ◽  
Y Zheng ◽  
...  

ABSTRACT The H α and H β emission-line luminosities measured in a single integrated spectrum are affected in non-trivial ways by point-to-point variations in dust attenuation in a galaxy. This work investigates the impact of this variation when estimating global H α luminosities corrected for the presence of dust by a global Balmer decrement. Analytical arguments show that the dust-corrected H α luminosity is always underestimated when using the global H α/H β flux ratio to correct for dust attenuation. We measure this effect on 156 face-on star-forming galaxies from the Mapping Nearby Galaxies at APO (MaNGA) survey. At 1–2 kpc spatial resolution, the effect is small but systematic, with the integrated dust-corrected H α luminosity underestimated by 2–4 per cent (and typically not more than by 10 per cent), and depends on the specific star formation rate of the galaxy. Given the spatial resolution of MaNGA, these are lower limits for the effect. From Multi Unit Spectroscopic Explorer (MUSE) observations of NGC 628 with a resolution of 36 pc, we find the discrepancy between the globally and the point-by-point dust-corrected H α luminosity to be 14 ± 1 per cent, which may still underestimate the true effect. We use toy models and simulations to show that the true difference depends strongly on the spatial variance of the H α/H β flux ratio, and on the slope of the relation between H αluminosity and dust attenuation within a galaxy. Larger samples of higher spatial resolution observations are required to quantify the dependence of this effect as a function of galaxy properties.


2003 ◽  
Vol 212 ◽  
pp. 515-522
Author(s):  
Anthony F.J. Moffat ◽  

While NGC 3603 is often quoted as the most massive visible Giant H ii Region in the Galaxy, there are other similar and even more massive regions now being found towards the inner Galaxy in the near-IR. Nevertheless, NGC 3603 still retains the status of clone to the dense core-object in 30 Dor, R 136 — but 7x closer and 49x less crowded! This paper summarizes the most recent findings concerning NGC 3603's color-magnitude diagram (CMD), initial mass function (IMF), mass segregation and stellar content — including its unusually luminous H-rich WNL members — down to its pre-main-sequence stars near the H-burning limit. Of special relevance are new high-resolution X-ray and radio images as related to merging/colliding winds and three massive proplyd-like objects. NGC 3603 is a somewhat younger, hotter, scaled-down version of typical starbursts found in other galaxies.


1991 ◽  
Vol 148 ◽  
pp. 207-208
Author(s):  
Myung Gyoon Lee

Using U BV CCD photometry, the stellar content of HII regions and young star clusters in the Magellanic Clouds has been studied: (1) the reddenings have been determined, and ages of OB associations and young star clusters have been measured; (2) the stellar initial mass functions have been determined by using the main-sequence luminosity functions; and (3) U BV CCD surface photometry of nine young star clusters has been obtained and their structural properties investigated.


Sign in / Sign up

Export Citation Format

Share Document