scholarly journals Constraints on Dark Matter from Primordial Nucleosynthesis

1987 ◽  
Vol 117 ◽  
pp. 499-523
Author(s):  
Jean Audouze

Primordial nucleosynthesis which is responsible for the formation of the lightest elements (D, 3He, 4He and 7Li) provides a unique way to determine the present baryon density pB in the Universe and therefore the corresponding cosmological parameter ΩB. After a brief summary of the relevant abundance determinations and of the consequences of the Standard Big Bang nucleosynthesis, it is argued that one needs to call for specific models of chemical evolution of the Galaxy in order to reconcile the observations with the predictions of this model. In this context the predicted values for ΩB should range from 4 10−3 to 6 10−2. These values are significantly lower than those deduced from current M/L determinations.

It is shown that not only does Big Bang nucleosynthesis provide an upper limit on the baryon density of the Universe, but if one takes into account arguments concerning the production of 3 He in stars, one can show that the 3 He plus deuterium abundance can also provide a lower limit on the baryon density of the Universe. The derived constraints are that the baryon: photon ratio, y, must be between 1.5 x 10- 10 and 7 x 10 -9 with a best fit between 3 and 6 x 10 -10 . This small range for y has implications for our limits on numbers of neutrino types, for Big Bang baryosynthesis, and for arguments about the nature of the dark matter in clusters of galaxies. With reference to the dark matter, the derived baryon density for Big Bang nucleosynthesis corresponds very closely with the implied density of matter in binaries and small groups of galaxies. This implies that non-baryonic matter is not dominant by a large factor on scales as large as binaries and small groups of galaxies. It is also shown that the constraints on the lower limit on the baryon density constrain the lower limit on the primordial 4He abundance. Consistency seems to be possible only if the primordial 4 He is between 23 and 25 % by mass if there are three or four species of neutrinos.


1988 ◽  
Vol 20 (1) ◽  
pp. 658-660
Author(s):  
J. Audouze

Primordial nucleosynthesis which is responsible for the formation of the lightest elements (D, 3He, 4HE and 7Li) might be as important as the overall expansion of the Universe and the cosmic background radiation to prove the occurrence of a dense and hot phase for the Unvierse about 15 billion years ago. As recalled in many reviews (e.g. refs. 1, 2) the standard Big Bang nucleosynthesis leads to two important conclusions regarding (i) a limitation of the baryonic density such that the corresponding cosmological parameter ΩB ≤ 0.1; (ii) a limitation of the number of neutrino flavours to 3-4 consistent with the results concerning the widths of the Z0 and W± particles3.


2019 ◽  
Vol 28 (08) ◽  
pp. 1950065 ◽  
Author(s):  
Tahani R. Makki ◽  
Mounib F. El Eid ◽  
Grant J. Mathews

The light elements and their isotopes were produced during standard big bang nucleosynthesis (SBBN) during the first minutes after the creation of the universe. Comparing the calculated abundances of these light species with observed abundances, it appears that all species match very well except for lithium (7Li) which is overproduced by the SBBN. This discrepancy is rather challenging for several reasons to be considered on astrophysical and on nuclear physics ground, or by invoking nonstandard assumptions which are the focus of this paper. In particular, we consider a variation of the chemical potentials of the neutrinos and their temperature. In addition, we investigated the effect of dark matter on 7Li production. We argue that including nonstandard assumptions can lead to a significant reduction of the 7Li abundance compared to that of SBBN. This aspect of lithium production in the early universe may help to resolve the outstanding cosmological lithium problem.


1977 ◽  
Vol 3 (2) ◽  
pp. 100-101 ◽  
Author(s):  
R. D. Brown

There have been a number of attempts made in the last decade or two to observe deuterium in parts of the universe other than here in Earth. It is of interest merely to detect deuterium elsewhere just as it is to detect the occurrence of any nuclide. However in the case of deuterium there is a special interest because in big-bang cosmologies the great majority of deuterium in the universe is considered to have been formed in the initial fireball (Wagoner, 1973). Any observation of the present abundance of deuterium thus might give information about the very early stages of the creation of the universe. Detailed studies of nucleosynthesis during the early expansion of hot big-bang universes have however indicated a particular feature of deuterium production. (Fig. 1) The mass fraction produced X(D) is a very sensitive function of the size of the universe, as measured say by the present baryon density ϱb. Other nuclides that are mainly produced in the early expansion, such as 4He, have mass fractions less dependent on ϱb. Thus if we adopt the big-bang model for our universe we can determine ϱb from observations of X(D). Apart from any intrinsic interest in the present density of the’universe, there is considerable interest in whether the value is great enough for the present expansion to halt and go over to a collapse — or so small that the expansion of the universe will go on forever.


2018 ◽  
Vol 33 (29) ◽  
pp. 1850181 ◽  
Author(s):  
Saleh Hamdan ◽  
James Unwin

We highlight the general scenario of dark matter freeze-out while the energy density of the universe is dominated by a decoupled non-relativistic species. Decoupling during matter domination changes the freeze-out dynamics, since the Hubble rate is parametrically different for matter and radiation domination. Furthermore, for successful Big Bang Nucleosynthesis the state dominating the early universe energy density must decay, this dilutes (or repopulates) the dark matter. As a result, the masses and couplings required to reproduce the observed dark matter relic density can differ significantly from radiation-dominated freeze-out.


1986 ◽  
Vol 7 ◽  
pp. 27-38 ◽  
Author(s):  
Vera C. Rubin

Thirty years ago, observational cosmology consisted of the search for two numbers: Ho, the rate of expansion of the universe at the position of the Galaxy; and qo, the deceleration parameter. Twenty years ago, the discovery of the relic radiation from the Big Bang produced another number, 3oK. But it is the past decade which has seen the enormous development in both observational and theoretical cosmology. The universe is known to be immeasurably richer and more varied than we had thought. There is growing acceptance of a universe in which most of the matter is not luminous. Nature has played a trick on astronomers, for we thought we were studying the universe. We now know that we were studying only the small fraction of it that is luminous. I suspect that this talk this evening is the first IAU Discourse devoted to something that astronomers cannot see at any wavelength: Dark Matter in the Universe.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
M. Yu. Khlopov ◽  
R. M. Shibaev

The nonbaryonic dark matter of the Universe can consist of new stable charged species, bound in heavy neutral “atoms” by ordinary Coulomb interaction. StableU-(anti-U)quarks of 4th generation, bound in stable colorless(U- U- U-)clusters, are captured by the primordial helium, produced in Big Bang Nucleosynthesis, thus forming neutral “atoms” of O-helium (OHe), a specific nuclear interacting dark matter that can provide solution for the puzzles of direct dark matter searches. However, the existence of the 4th generation quarks and leptons should influence the production and decay rates of Higgs boson and is ruled out by the experimental results of the Higgs boson searches at the LHC, if the Higgs boson coupling to 4th generation fermions is not suppressed. Here, we argue that the difference between the three known quark-lepton families and the 4th family can naturally lead to suppression of this coupling, relating the accelerator test for such a composite dark matter scenario to the detailed study of the production and modes of decay of the 125.5 GeV boson, discovered at the LHC.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Paolo Ciarcelluti

One of the still viable candidates for the dark matter is the so-called mirror matter. Its cosmological and astrophysical implications were widely studied, pointing out the importance to go further with research. In particular, the Big Bang nucleosynthesis provides a strong test for every dark matter candidate, since it is well studied and involves relatively few free parameters. The necessity of accurate studies of primordial nucleosynthesis with mirror matter has then emerged. I present here the results of accurate numerical simulations of the primordial production of both ordinary nuclides and nuclides made of mirror baryons, in presence of a hidden mirror sector with unbroken parity symmetry and with gravitational interactions only. These elements are the building blocks of all the structures forming in the Universe; therefore, their chemical composition is a key ingredient for astrophysics with mirror dark matter. The production of ordinary nuclides shows differences from the standard model for a ratio of the temperatures between mirror and ordinary sectorsx=T′/T≳0.3, and they present an interesting decrease of the abundance ofLi7. For the mirror nuclides, instead, one observes an enhanced production ofHe4, which becomes the dominant element forx≲0.5, and much larger abundances of heavier elements.


1993 ◽  
Vol 02 (04) ◽  
pp. 381-400
Author(s):  
HO-SHIK KANG

Based on the work by Kang and Steigman, I review the effects of neutrino degeneracy on big bang nucleosynthesis (BBN). Since the electron-neutrino degeneracy and the non-electron-neutrino degeneracy play a different role in the synthesis of the light elements ( D , 3 He , 4 He , 7 Li ), besides the baryon asymmetry (the nucleon-to-photon ratio; η ≡ nB/nγ) there are two additional free parameters in our scenario of degenerate BBN. An extended range of these parameters has been explored. It is shown that at a given η value, the agreement of the predicted primordial abundances of the light elements with those observationally inferred abundances restricts the permitted range of neutrino degeneracies, particularly the electron-neutrino degeneracy. Furthermore, we find that a large baryon density, even baryon-dominated, critical density (ΩB=1) Universe successfully provides the consistency between the predicted and observed abundances of all the light elements if neutrinos are degenerate enough. For an ΩB=1 Universe, for example, η10=80 is permitted if the electron-neutrino degeneracy and the expansion rate due to the non-electron-neutrino degeneracies fall in the ranges 1.2 ≲ ξνe ≲ 1.5, 17 ≲ S (ξνμ,τ) ≲ 33, respectively.


2021 ◽  
Vol 77 (3) ◽  
Author(s):  
Anslyn J. John

I review the state of knowledge of the composition of the universe for a non-specialist audience. The universe is built up of four components. These are radiation, baryonic (ordinary) matter, dark matter and dark energy. In this article, a quick outline of the theory of Big Bang nucleosynthesis is presented, and the origin of the elements is explained. Cosmology requires the presence of dark matter, which forms most of the mass of the universe, and dark energy, which drives the acceleration of the expansion. The dark sector is motivated, and possible explanations are stated.Contribution: As part of this special collection on building blocks, the building blocks of the universe are discussed and unsolved problems and proposed solutions are highlighted.


Sign in / Sign up

Export Citation Format

Share Document