scholarly journals The building blocks of the universe

2021 ◽  
Vol 77 (3) ◽  
Author(s):  
Anslyn J. John

I review the state of knowledge of the composition of the universe for a non-specialist audience. The universe is built up of four components. These are radiation, baryonic (ordinary) matter, dark matter and dark energy. In this article, a quick outline of the theory of Big Bang nucleosynthesis is presented, and the origin of the elements is explained. Cosmology requires the presence of dark matter, which forms most of the mass of the universe, and dark energy, which drives the acceleration of the expansion. The dark sector is motivated, and possible explanations are stated.Contribution: As part of this special collection on building blocks, the building blocks of the universe are discussed and unsolved problems and proposed solutions are highlighted.

2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Paolo Ciarcelluti

One of the still viable candidates for the dark matter is the so-called mirror matter. Its cosmological and astrophysical implications were widely studied, pointing out the importance to go further with research. In particular, the Big Bang nucleosynthesis provides a strong test for every dark matter candidate, since it is well studied and involves relatively few free parameters. The necessity of accurate studies of primordial nucleosynthesis with mirror matter has then emerged. I present here the results of accurate numerical simulations of the primordial production of both ordinary nuclides and nuclides made of mirror baryons, in presence of a hidden mirror sector with unbroken parity symmetry and with gravitational interactions only. These elements are the building blocks of all the structures forming in the Universe; therefore, their chemical composition is a key ingredient for astrophysics with mirror dark matter. The production of ordinary nuclides shows differences from the standard model for a ratio of the temperatures between mirror and ordinary sectorsx=T′/T≳0.3, and they present an interesting decrease of the abundance ofLi7. For the mirror nuclides, instead, one observes an enhanced production ofHe4, which becomes the dominant element forx≲0.5, and much larger abundances of heavier elements.


2019 ◽  
Vol 28 (08) ◽  
pp. 1950065 ◽  
Author(s):  
Tahani R. Makki ◽  
Mounib F. El Eid ◽  
Grant J. Mathews

The light elements and their isotopes were produced during standard big bang nucleosynthesis (SBBN) during the first minutes after the creation of the universe. Comparing the calculated abundances of these light species with observed abundances, it appears that all species match very well except for lithium (7Li) which is overproduced by the SBBN. This discrepancy is rather challenging for several reasons to be considered on astrophysical and on nuclear physics ground, or by invoking nonstandard assumptions which are the focus of this paper. In particular, we consider a variation of the chemical potentials of the neutrinos and their temperature. In addition, we investigated the effect of dark matter on 7Li production. We argue that including nonstandard assumptions can lead to a significant reduction of the 7Li abundance compared to that of SBBN. This aspect of lithium production in the early universe may help to resolve the outstanding cosmological lithium problem.


2018 ◽  
Vol 33 (29) ◽  
pp. 1850181 ◽  
Author(s):  
Saleh Hamdan ◽  
James Unwin

We highlight the general scenario of dark matter freeze-out while the energy density of the universe is dominated by a decoupled non-relativistic species. Decoupling during matter domination changes the freeze-out dynamics, since the Hubble rate is parametrically different for matter and radiation domination. Furthermore, for successful Big Bang Nucleosynthesis the state dominating the early universe energy density must decay, this dilutes (or repopulates) the dark matter. As a result, the masses and couplings required to reproduce the observed dark matter relic density can differ significantly from radiation-dominated freeze-out.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
M. Yu. Khlopov ◽  
R. M. Shibaev

The nonbaryonic dark matter of the Universe can consist of new stable charged species, bound in heavy neutral “atoms” by ordinary Coulomb interaction. StableU-(anti-U)quarks of 4th generation, bound in stable colorless(U- U- U-)clusters, are captured by the primordial helium, produced in Big Bang Nucleosynthesis, thus forming neutral “atoms” of O-helium (OHe), a specific nuclear interacting dark matter that can provide solution for the puzzles of direct dark matter searches. However, the existence of the 4th generation quarks and leptons should influence the production and decay rates of Higgs boson and is ruled out by the experimental results of the Higgs boson searches at the LHC, if the Higgs boson coupling to 4th generation fermions is not suppressed. Here, we argue that the difference between the three known quark-lepton families and the 4th family can naturally lead to suppression of this coupling, relating the accelerator test for such a composite dark matter scenario to the detailed study of the production and modes of decay of the 125.5 GeV boson, discovered at the LHC.


2014 ◽  
Vol 11 (02) ◽  
pp. 1460014 ◽  
Author(s):  
Winfried Zimdahl

Interactions inside the cosmological dark sector influence the cosmological dynamics. As a consequence, the future evolution of the Universe may be different from that predicted by the ΛCDM model. We review main features of several recently studied models with nongravitational couplings between dark matter and dark energy.


Author(s):  
Jackie Liu

ABSTRACT By theorizing the physical reality through the deformation of an arbitrary cross-ratio, we leverage Galois differential theory to describe the dynamics of isomonodromic integratable system. We found a new description of curvature of spacetime by the equivalency of isomonodromic integratable system and Penrose’s spinor formalism of general relativity. Using such description, we hypothetically quantize the curvature of spacetime (gravity) and apply to the problem of the evolution of the universe. The Friedmann equation is recovered and compared so that the mathematical relationship among dark energy, matter (dark matter + ordinary matter), and ordinary matter, ΩM2≃4ΩbΩΛ, is derived; the actual observed results are compared to this equation (calculated ΩM = 0.33 vs. observed ΩM = 0.31); the model might explain the origin of dark energy and dark matter of the evolution of the universe.


Author(s):  
Mohammed B. Al-Fadhli

The necessity of the dark energy and dark matter in the present universe could be a consequence of the antimatter elimination assumption in the early universe. In this research, I derive a new model to obtain the cosmic horizon radius and the potential cosmic topology utilising a new construal of space geometry inspired by large-angle correlations of the cosmic microwave background (CMB). A version of the Big Bounce theory is utilised to avoid the Big Bang singularity and inflationary constraints, and to tune the initial conditions of the curvature density. The mathematical derivation of a positively curved universe governed by only gravity revealed two cosmic horizon solutions. Although the positive horizon is conventionally associated with the evolution of the matter universe, the negative horizon solution could imply additional evolution in the opposite direction. This possibly suggests that the matter and antimatter could be evolving in opposite directions as distinct sides of the universe, as in the visualised Sloan Digital Sky Survey. The cosmic horizon radius is found to be accountable for the universal space curvature. By implementing this model, we find a decelerated stage of expansion during the first 10 Gyr, which is followed by a second stage of an accelerated expansion; potentially matching the tension in Hubble parameter measurements. In addition, the model predicts a final time-reversal stage of spatial contraction leading to the Big Crunch of a cyclic universe. The predicted density is 1.14. Other predictions are (1) a calculable flow rate of the matter side towards the antimatter side at the accelerated stage; conceivably explaining the dark flow observation, (2) a time-dependent spacetime curvature over horizon evolution, which could influence the galactic rotational speed; possibly explaining the high speed of stars, and (3) evolvable spacetime internal voids at the accelerated stage, which could contribute in continuously increasing the matter and antimatter densities elsewhere in both sides respectively. These findings may indicate the existence of the antimatter as a distinct side, which influences the evolution of the universe instead of the dark energy or dark matter.


2020 ◽  
Vol 3 (2) ◽  

Note: Dr. Bentovish (Bentwich) is seeking scientific collaboration and validation of this New ‘G-d’s Physics’ (Computational Unified Field Theory) Paradigm’s Empirical “Critical Predictions” involving precise Astronomical/Cosmological Measurements, as well as time-sensitive Accelerators validations. Twenty-first Century Theoretical Physics is at a state of crisis akin to pre-Einstein’s 1905 Relativistic “Paradigmatic Shift: its two primary “pillars”, Relativity Theory (RT) and Quantum Mechanics (QM) seem contradictory and up to 95% of all mass and energy in the universe is unaccounted for (termed: “dark-matter” and “dark-energy”); A New “Computational Unified Field Theory” (CUFT) discovered over the past eight years – also called: “G-d’s Physics’ Paradigm was shown to resolve this apparent RT-QM inconsistency and discard “dark-matter”, “dark-energy” as “superfluous” (i.e., non-existent)! This article delineates this New ‘G-d’s Physics’ Paradigm’s new “Atom”, e.g., basic “building-block” of the physical universe associated with its discovery of the singular (higherordered) “Universal Computational Principle” (UCP) which simultaneously computes every exhaustive spatial pixel in the universe at the incredible rate of “c2 /h”=1.36-50 sec! This New ‘G-d’s Physics’ Paradigm “Atom” is shown to challenge and negate some of the basic assumptions of RT’s & QM’s Old ‘Material-Causal’ Paradigm, including: the “Big-Bang” Model, Einstein’s Equations, the “Speed of Light Barrier” and opens new exciting possibilities including “time-reversal”, and a complete integration of “space”, “time”, “energy” and “mass” within a new exhaustive “Universal Computational Formula” (which integrates and transcends key components of RT & QM); The New ‘G-d’s Physics Paradigm reveals a new Purposeful Universe which possesses multiple possible “future/s” associated with the “Moral Choices” of Human-beings, and which is directed towards an ultimate “Perfected State” (Morally, Spiritually and Physically)!


2015 ◽  
Vol 24 (03) ◽  
pp. 1530007 ◽  
Author(s):  
Yuri L. Bolotin ◽  
Alexander Kostenko ◽  
Oleg A. Lemets ◽  
Danylo A. Yerokhin

In this review we consider in detail different theoretical topics associated with interaction in the dark sector. We study linear and nonlinear interactions which depend on the dark matter and dark energy densities. We consider a number of different models (including the holographic dark energy and dark energy in a fractal universe), with interacting dark energy and dark matter, have done a thorough analysis of these models. The main task of this review was not only to give an idea about the modern set of different models of dark energy, but to show how much can be diverse dynamics of the universe in these models. We find that the dynamics of a universe that contains interaction in the dark sector can differ significantly from the Standard Cosmological Model.


2018 ◽  
Vol 33 (20) ◽  
pp. 1850119 ◽  
Author(s):  
David Benisty ◽  
Eduardo I. Guendelman

We consider the history of the universe from a possible big bang or a bounce into a late period of a unified interacting dark energy–dark matter model. The model is based on the Two Measures Theories (TMT) which introduces a metric independent volume element and this allows us to construct a unification of dark energy and dark matter. A generalization of the Two Measures Theories gives a diffusive nonconservative stress-energy–momentum tensor in addition to the conserved stress-energy tensor which appear in Einstein equations. These leads to a formulation of interacting DE–DM dust models in the form of a diffusive-type interacting Unified Dark Energy and Dark Matter scenario. The deviation from [Formula: see text]CDM is determined by the diffusion constant [Formula: see text]. For [Formula: see text] the model is indistinguishable from [Formula: see text]CDM. Numerical solutions of the theories show that in some [Formula: see text] the evolution of the early universe is governed by Stiff equation of state or the universe bounces to hyper-inflation. But all of those solutions have a final transition to [Formula: see text]CDM as a stable fixed point for the late universe.


Sign in / Sign up

Export Citation Format

Share Document