scholarly journals Spectroscopic surveillance of the variable Herbig Ae star AB Aur

1986 ◽  
Vol 118 ◽  
pp. 443-445 ◽  
Author(s):  
U. Finkenzeller ◽  
J.G.V. Schiffer ◽  
H. Mandel

AB Aur = HD 31293 = BD + 300741 = MWC 93 = HRC 78n is one of the brightest members of a class of pre-main sequence objects introduced by G. Herbig in 1960. The star is characterized by a spectral type of AOVe, L/L⊙ = 70, mv = 7.2 mag, v sini = 140 km/s, and d = 140 pc. Assuming a stellar radius of a main sequence dwarf R/R⊙ = 3.0, one can estimate the rotational period to be on the order of 28 hours if we see the system edge on. Previous work (Praderie et al. (1985) and Finkenzeller (1983)) has focused on high resolution spectroscopy and shown that AB Aur is subject to short term variations. Finkenzeller's observations have indicated that the emission features can disappear completely within a day. Praderie et al. found evidence of a rotational modulation (45 ± 6 hours) of the MgII λ 2795 and FeII UV lines which is interpreted as due to a non-axisymmetric wind interacting with the outer atmosphere.

2006 ◽  
Vol 2 (14) ◽  
pp. 169-194
Author(s):  
Ana I. Gómez de Castro ◽  
Martin A. Barstow

AbstractThe scientific program is presented as well a the abstracts of the contributions. An extended account is published in “The Ultraviolet Universe: stars from birth to death” (Ed. Gómez de Castro) published by the Editorial Complutense de Madrid (UCM), that can be accessed by electronic format through the website of the Network for UV Astronomy (www.ucm.es/info/nuva).There are five telescopes currently in orbit that have a UV capability of some description. At the moment, only FUSE provides any medium- to high-resolution spectroscopic capability. GALEX, the XMM UV-Optical Telescope (UVOT) and the Swift. UVOT mainly delivers broad-band imaging, but with some low-resolution spectroscopy using grisms. The primary UV spectroscopic capability of HST was lost when the Space Telescope Imaging Spectrograph failed in 2004, but UV imaging is still available with the HST-WFPC2 and HST-ACS instruments.With the expected limited lifetime of sl FUSE, UV spectroscopy will be effectively unavailable in the short-term future. Even if a servicing mission of HST does go ahead, to install COS and repair STIS, the availability of high-resolution spectroscopy well into the next decade will not have been addressed. Therefore, it is important to develop new missions to complement and follow on from the legacy of FUSE and HST, as well as the smaller imaging/low resolution spectroscopy facilities. This contribution presents an outline of the UV projects, some of which are already approved for flight, while others are still at the proposal/study stage of their development.This contribution outlines the main results from Joint Discussion 04 held during the IAU General Assembly in Prague, August 2006, concerning the rationale behind the needs of the astronomical community, in particular the stellar astrophysics community, for new UV instrumentation. Recent results from UV observations were presented and future science goals were laid out. These goals will lay the framework for future mission planning.


The broad, steep-sided absorption lines in B-type supergiant spectra are stronger than the absorption lines in main-sequence stars. In addition to lines from the second, third and fourth spectra of the light elements and the metals there is a broad, pointed feature at 1720 A which has constant strength in the B-type supergiants regardless of spectral type. The complete identification of this blend is not known. At high resolution the ultraviolet resonance lines of C iv, N v, Si hi and Si iv in the spectra of OB supergiants are shortward displaced by velocities up to 1800 km s-1 indicating the presence of an escaping atmosphere. At type B5 the expanding atmosphere is moving at about 120 km s-1 which means that the material is probably brought to rest before it escapes from the star. Evidence is presented of the presence of a stationary shell around the B5Ia supergiant q Canis Majoris as well as a slowly expanding atmosphere.


2000 ◽  
Vol 175 ◽  
pp. 344-347
Author(s):  
M. Pogodin

AbstractNew results of high-resolution spectroscopy of four pre-main sequence Ae/Be stars are presented. An analysis of parameters of lines originating in different regions of the circumstellar (CS) envelope (Hα, Hβ, He I 5876, DNal) allows to reconstruct a picture of the interaction between the star and the CS environment which can be displayed in different forms. At least two separate processes seem to impact the structural and kinematical properties of the envelope: the stellar wind from the stellar surface and the matter infall onto the star from the CS media. A possible relation between these two phenomena is discussed in the framework of different models. Some similarity between observational phenomena in Herbig Ae/Be and classical Be stars is noted in spite of their difference in evolutionary status.


1994 ◽  
Vol 162 ◽  
pp. 284-286
Author(s):  
Geraldine J. Peters

During the past six years we have carried through seven multiwavelength, multisite campaigns to investigate the cause for short-term (rapid) photometric and spectroscopic variability in Be stars and assess its importance in driving the mass loss in these objects. These campaigns usually included simultaneous observations in the UV with the IUE and Voyager spacecraft and optical region with ground-based telescopes worldwide (photometry, high resolution spectroscopy, and polarimetry). Typically 10–25 observers from 5–9 countries participated. Stars that have been observed include λ Eri, ω Ori, o And, ∊ Cap, 28 Cyg, η Cen, 48 Lib, ζ Tau, ψ Per, and 2 Vul. We briefly summarize some of the results from the UV study here. Additional results from the ground-based data are given in other papers in this volume by D. Gies, M. Hahula, J. Percy, and D. McDavid.


2002 ◽  
Vol 185 ◽  
pp. 284-287
Author(s):  
O. Kochukhov ◽  
T. Ryabchikova

AbstractWe report results of Spectroscopic monitoring of the roAp stars γ Equ, α Cir and HR 3831 with the ESO 3.6-meter telescope. Series of very high-resolution and high S/N spectra allowed to resolve changes of line profiles due to the pulsations. We found that pulsational behaviour of all three roAp stars is dominated by the variations of the doubly ionized rare-earth lines. Detailed analysis of the pulsational changes of Nd III and Pr III spectral features allowed us to identify the pulsational mode of γ Equ and to study rotational modulation of the pulsational pattern in the spectra of α Cir and HR 3831.


Author(s):  
J. S. DA COSTA ◽  
J. D. DO NASCIMENTO

It is well established that there is a breakdown in the curve of specific angular momentum as a function of mass for stars on the main sequence Ref. 5. Stars earlier than F5 and more massive than the sun, rotate rapidly over a large mass range. For spectral type F5 and later, including the Sun, much smaller rotational velocities are found. We revisit this question from a new sample to shed a light on the basis of a sample solar twins and analogs recently observed by interferometric measurements of stellar radius. Our results clearly show that, as the Sun, the solar twins present similar global behavior from their specific angular momentum. 18 Sco and HIP 100963 have a specific angular momentum one order higher than the solar value, and HIP 55459 and HIP 56948 have a specific angular momentum one order lower than the solar value.


Author(s):  
Graeme H. Smith

AbstractCorrelations are identified between the strength of the λ10830 He I triplet line and the following tracers of stellar activity amongst FGK dwarfs with colours of (B − V) > 0.47: coronal soft X-ray emission, emission in the λ1549 C IV and λ1335 C II lines originating from the transition region, and Ca II H and K emission from the chromosphere. No such correlations are present amongst dwarfs with spectral type earlier than F6. In addition, G and K dwarfs with strong triplet lines show evidence of excess flux in the GALEX FUV band compared to weak-triplet-line dwarfs. The X-ray spectra of late-F, G, and K dwarfs with He I triplets stronger than 160 mÅ have greater values of the ROSAT hardness ratio HR1 than are typical of weak-triplet dwarfs in the same range of spectral type. In other words, dwarfs later than F7V with strong He I triplet lines tend towards harder 0.1–2.0 keV X-ray spectra than weak-triplet dwarfs, although values of HR1 ~ −0.2 to +0.1 can still be encountered amongst a minority of weak-He-triplet stars. As regards, FGK main sequence stars the observational data on the λ10830 triplet line remains sparse. Progress could be made through spectroscopy of high resolution for samples of hundreds of stars, selected on the basis of having other measures of chromospheric and coronal activity available.


1988 ◽  
Vol 102 ◽  
pp. 41
Author(s):  
E. Silver ◽  
C. Hailey ◽  
S. Labov ◽  
N. Madden ◽  
D. Landis ◽  
...  

The merits of microcalorimetry below 1°K for high resolution spectroscopy has become widely recognized on theoretical grounds. By combining the high efficiency, broadband spectral sensitivity of traditional photoelectric detectors with the high resolution capabilities characteristic of dispersive spectrometers, the microcalorimeter could potentially revolutionize spectroscopic measurements of astrophysical and laboratory plasmas. In actuality, however, the performance of prototype instruments has fallen short of theoretical predictions and practical detectors are still unavailable for use as laboratory and space-based instruments. These issues are currently being addressed by the new collaborative initiative between LLNL, LBL, U.C.I., U.C.B., and U.C.D.. Microcalorimeters of various types are being developed and tested at temperatures of 1.4, 0.3, and 0.1°K. These include monolithic devices made from NTD Germanium and composite configurations using sapphire substrates with temperature sensors fabricated from NTD Germanium, evaporative films of Germanium-Gold alloy, or material with superconducting transition edges. A new approache to low noise pulse counting electronics has been developed that allows the ultimate speed of the device to be determined solely by the detector thermal response and geometry. Our laboratory studies of the thermal and resistive properties of these and other candidate materials should enable us to characterize the pulse shape and subsequently predict the ultimate performance. We are building a compact adiabatic demagnetization refrigerator for conveniently reaching 0.1°K in the laboratory and for use in future satellite-borne missions. A description of this instrument together with results from our most recent experiments will be presented.


Sign in / Sign up

Export Citation Format

Share Document